×

Hexagon functions and the three-loop remainder function. (English) Zbl 1342.81159

Summary: We present the three-loop remainder function, which describes the scattering of six gluons in the maximally-helicity-violating configuration in planar \(N = 4\) superYang-Mills theory, as a function of the three dual conformal cross ratios. The result can be expressed in terms of multiple Goncharov polylogarithms. We also employ a more restricted class of hexagon functions which have the correct branch cuts and certain other restrictions on their symbols. We classify all the hexagon functions through transcendental weight five, using the coproduct for their Hopf algebra iteratively, which amounts to a set of first-order differential equations. The three-loop remainder function is a particular weight-six hexagon function, whose symbol was determined previously. The differential equations can be integrated numerically for generic values of the cross ratios, or analytically in certain kinematic limits, including the near-collinear and multi-Regge limits. These limits allow us to impose constraints from the operator product expansion and multiRegge factorization directly at the function level, and thereby to fix uniquely a set of Riemann \(\zeta\) valued constants that could not be fixed at the level of the symbol. The nearcollinear limits agree precisely with recent predictions by Basso, Sever and Vieira based on integrability. The multi-Regge limits agree with the factorization formula of Fadin and Lipatov, and determine three constants entering the impact factor at this order. We plot the three-loop remainder function for various slices of the Euclidean region of positive cross ratios, and compare it to the two-loop one. For large ranges of the cross ratios, the ratio of the three-loop to the two-loop remainder function is relatively constant, and close to \(-7\).

MSC:

81Q60 Supersymmetry and quantum mechanics
81T60 Supersymmetric field theories in quantum mechanics
81T13 Yang-Mills and other gauge theories in quantum field theory

References:

[1] R.J. Eden, P.V. Landshoff, D.I. Olive and J.C. Polkinghorne, The analytic S-matrix, Cambridge University Press, Cambridge U.K. (1966). · Zbl 0139.46204
[2] G. Veneziano, Construction of a crossing-symmetric, Regge behaved amplitude for linearly rising trajectories, Nuovo Cim.A 57 (1968) 190 [INSPIRE]. · doi:10.1007/BF02824451
[3] S. Ferrara, A. Grillo and R. Gatto, Tensor representations of conformal algebra and conformally covariant operator product expansion, Annals Phys.76 (1973) 161 [INSPIRE]. · doi:10.1016/0003-4916(73)90446-6
[4] A. Polyakov, Nonhamiltonian approach to conformal quantum field theory, Zh. Eksp. Teor. Fiz.66 (1974) 23 [INSPIRE].
[5] A. Belavin, A.M. Polyakov and A. Zamolodchikov, Infinite conformal symmetry in two-dimensional quantum field theory, Nucl. Phys.B 241 (1984) 333 [INSPIRE]. · Zbl 0661.17013 · doi:10.1016/0550-3213(84)90052-X
[6] R. Rattazzi, V.S. Rychkov, E. Tonni and A. Vichi, Bounding scalar operator dimensions in 4D CFT, JHEP12 (2008) 031 [arXiv:0807.0004] [INSPIRE]. · Zbl 1329.81324 · doi:10.1088/1126-6708/2008/12/031
[7] S. El-Showk et al., Solving the 3D Ising model with the conformal bootstrap, Phys. Rev.D 86 (2012) 025022 [arXiv:1203.6064] [INSPIRE].
[8] C. Beem, L. Rastelli and B.C. van Rees, The N = 4 superconformal bootstrap, Phys. Rev. Lett.111 (2013) 071601 [arXiv:1304.1803] [INSPIRE]. · doi:10.1103/PhysRevLett.111.071601
[9] J. Drummond, J. Henn, V. Smirnov and E. Sokatchev, Magic identities for conformal four-point integrals, JHEP01 (2007) 064 [hep-th/0607160] [INSPIRE]. · doi:10.1088/1126-6708/2007/01/064
[10] Z. Bern, M. Czakon, L.J. Dixon, D.A. Kosower and V.A. Smirnov, The four-loop planar amplitude and cusp anomalous dimension in maximally supersymmetric Yang-Mills theory, Phys. Rev.D 75 (2007) 085010 [hep-th/0610248] [INSPIRE].
[11] Z. Bern, J.J. Carrasco, H. Johansson and D. Kosower, Maximally supersymmetric planar Yang-Mills amplitudes at five loops, Phys. Rev.D 76 (2007) 125020 [arXiv:0705.1864] [INSPIRE].
[12] L.F. Alday and J.M. Maldacena, Gluon scattering amplitudes at strong coupling, JHEP06 (2007) 064 [arXiv:0705.0303] [INSPIRE]. · doi:10.1088/1126-6708/2007/06/064
[13] J. Drummond, G. Korchemsky and E. Sokatchev, Conformal properties of four-gluon planar amplitudes and Wilson loops, Nucl. Phys.B 795 (2008) 385 [arXiv:0707.0243] [INSPIRE]. · Zbl 1219.81227 · doi:10.1016/j.nuclphysb.2007.11.041
[14] A. Brandhuber, P. Heslop and G. Travaglini, MHV amplitudes in N = 4 super Yang-Mills and Wilson loops, Nucl. Phys.B 794 (2008) 231 [arXiv:0707.1153] [INSPIRE]. · Zbl 1273.81201 · doi:10.1016/j.nuclphysb.2007.11.002
[15] L.F. Alday, D. Gaiotto, J. Maldacena, A. Sever and P. Vieira, An operator product expansion for polygonal null Wilson loops, JHEP04 (2011) 088 [arXiv:1006.2788] [INSPIRE]. · Zbl 1250.81071 · doi:10.1007/JHEP04(2011)088
[16] D. Gaiotto, J. Maldacena, A. Sever and P. Vieira, Bootstrapping null polygon Wilson loops, JHEP03 (2011) 092 [arXiv:1010.5009] [INSPIRE]. · Zbl 1301.81125 · doi:10.1007/JHEP03(2011)092
[17] D. Gaiotto, J. Maldacena, A. Sever and P. Vieira, Pulling the straps of polygons, JHEP12 (2011) 011 [arXiv:1102.0062] [INSPIRE]. · Zbl 1306.81153 · doi:10.1007/JHEP12(2011)011
[18] A. Sever, P. Vieira and T. Wang, OPE for super loops, JHEP11 (2011) 051 [arXiv:1108.1575] [INSPIRE]. · Zbl 1306.81362 · doi:10.1007/JHEP11(2011)051
[19] J. Drummond, J. Henn, G. Korchemsky and E. Sokatchev, On planar gluon amplitudes/Wilson loops duality, Nucl. Phys.B 795 (2008) 52 [arXiv:0709.2368] [INSPIRE]. · Zbl 1219.81191 · doi:10.1016/j.nuclphysb.2007.11.007
[20] L.F. Alday and J. Maldacena, Comments on gluon scattering amplitudes via AdS/CFT, JHEP11 (2007) 068 [arXiv:0710.1060] [INSPIRE]. · Zbl 1245.81256 · doi:10.1088/1126-6708/2007/11/068
[21] J. Drummond, J. Henn, G. Korchemsky and E. Sokatchev, Conformal Ward identities for Wilson loops and a test of the duality with gluon amplitudes, Nucl. Phys.B 826 (2010) 337 [arXiv:0712.1223] [INSPIRE]. · Zbl 1203.81175 · doi:10.1016/j.nuclphysb.2009.10.013
[22] Z. Bern, L.J. Dixon and V.A. Smirnov, Iteration of planar amplitudes in maximally supersymmetric Yang-Mills theory at three loops and beyond, Phys. Rev.D 72 (2005) 085001 [hep-th/0505205] [INSPIRE].
[23] Z. Bern et al., The two-loop six-gluon MHV amplitude in maximally supersymmetric Yang-Mills theory, Phys. Rev.D 78 (2008) 045007 [arXiv:0803.1465] [INSPIRE].
[24] J. Drummond, J. Henn, G. Korchemsky and E. Sokatchev, Hexagon Wilson loop = six-gluon MHV amplitude, Nucl. Phys.B 815 (2009) 142 [arXiv:0803.1466] [INSPIRE]. · Zbl 1194.81316 · doi:10.1016/j.nuclphysb.2009.02.015
[25] J. Drummond, J. Henn, G. Korchemsky and E. Sokatchev, Dual superconformal symmetry of scattering amplitudes in N = 4 super-Yang-Mills theory, Nucl. Phys.B 828 (2010) 317 [arXiv:0807.1095] [INSPIRE]. · Zbl 1203.81112 · doi:10.1016/j.nuclphysb.2009.11.022
[26] K.T. Chen, Iterated path integrals, Bull. Amer. Math. Soc.83 (1977) 831. · Zbl 0389.58001 · doi:10.1090/S0002-9904-1977-14320-6
[27] F.C. Brown, Multiple zeta values and periods of moduli spaces \({{\mathfrak{M}}_0}_{,n }\) Annales Sci. Ecole Norm. Sup.42 (2009) 371 [math/0606419] [INSPIRE]. · Zbl 1216.11079
[28] A. Goncharov, A simple construction of Grassmannian polylogarithms, arXiv:0908.2238 [INSPIRE]. · Zbl 1360.11077
[29] A. Goncharov, Galois symmetries of fundamental groupoids and noncommutative geometry, Duke Math. J.128 (2005) 209 [math/0208144] [INSPIRE]. · Zbl 1095.11036 · doi:10.1215/S0012-7094-04-12822-2
[30] F. Brown, On the decomposition of motivic multiple zeta values, arXiv:1102.1310 [INSPIRE]. · Zbl 1321.11087
[31] F. Brown, Mixed Tate motives over \(\mathbb{Z} \), arXiv:1102.1312. · Zbl 1278.19008
[32] A.B. Goncharov, M. Spradlin, C. Vergu and A. Volovich, Classical polylogarithms for amplitudes and Wilson loops, Phys. Rev. Lett.105 (2010) 151605 [arXiv:1006.5703] [INSPIRE]. · doi:10.1103/PhysRevLett.105.151605
[33] L.J. Dixon, J.M. Drummond and J.M. Henn, Bootstrapping the three-loop hexagon, JHEP11 (2011) 023 [arXiv:1108.4461] [INSPIRE]. · Zbl 1306.81092 · doi:10.1007/JHEP11(2011)023
[34] L.J. Dixon, J.M. Drummond and J.M. Henn, Analytic result for the two-loop six-point NMHV amplitude in N = 4 super Yang-Mills theory, JHEP01 (2012) 024 [arXiv:1111.1704] [INSPIRE]. · Zbl 1306.81093 · doi:10.1007/JHEP01(2012)024
[35] C. Duhr, Hopf algebras, coproducts and symbols: an application to Higgs boson amplitudes, JHEP08 (2012) 043 [arXiv:1203.0454] [INSPIRE]. · Zbl 1397.16028 · doi:10.1007/JHEP08(2012)043
[36] V. Del Duca, C. Duhr and V.A. Smirnov, An analytic result for the two-loop hexagon Wilson loop in N = 4 SYM, JHEP03 (2010) 099 [arXiv:0911.5332] [INSPIRE]. · Zbl 1271.81104 · doi:10.1007/JHEP03(2010)099
[37] V. Del Duca, C. Duhr and V.A. Smirnov, The two-loop hexagon Wilson loop in N = 4 SYM, JHEP05 (2010) 084 [arXiv:1003.1702] [INSPIRE]. · Zbl 1287.81080 · doi:10.1007/JHEP05(2010)084
[38] A. Hodges, Eliminating spurious poles from gauge-theoretic amplitudes, JHEP05 (2013) 135 [arXiv:0905.1473] [INSPIRE]. · Zbl 1342.81291 · doi:10.1007/JHEP05(2013)135
[39] S. Caron-Huot and S. He, Jumpstarting the all-loop S-matrix of planar N = 4 super Yang-Mills, JHEP07 (2012) 174 [arXiv:1112.1060] [INSPIRE]. · Zbl 1397.81347 · doi:10.1007/JHEP07(2012)174
[40] M. Bullimore and D. Skinner, Descent equations for superamplitudes, arXiv:1112.1056 [INSPIRE].
[41] B. Basso, A. Sever and P. Vieira, Space-time S-matrix and flux-tube S-matrix at finite coupling, Phys. Rev. Lett.111 (2013) 091602 [arXiv:1303.1396] [INSPIRE]. · doi:10.1103/PhysRevLett.111.091602
[42] B. Basso, A. Sever and P. Vieira, Space-time S-matrix and flux tube S-matrix II. Extracting and matching data, arXiv:1306.2058 [INSPIRE].
[43] B. Basso, A. Sever and P. Vieira, private communication.
[44] L.J. Dixon, J.M. Drummond, C. Duhr and J. Pennington, to appear.
[45] J. Bartels, L. Lipatov and A. Sabio Vera, BFKL Pomeron, Reggeized gluons and Bern-Dixon-Smirnov amplitudes, Phys. Rev.D 80 (2009) 045002 [arXiv:0802.2065] [INSPIRE].
[46] J. Bartels, L. Lipatov and A. Sabio Vera, N = 4 supersymmetric Yang-Mills scattering amplitudes at high energies: the Regge cut contribution, Eur. Phys. J.C 65 (2010) 587 [arXiv:0807.0894] [INSPIRE]. · doi:10.1140/epjc/s10052-009-1218-5
[47] R.M. Schabinger, The imaginary part of the N = 4 super-Yang-Mills two-loop six-point MHV amplitude in multi-Regge kinematics, JHEP11 (2009) 108 [arXiv:0910.3933] [INSPIRE]. · doi:10.1088/1126-6708/2009/11/108
[48] L. Lipatov and A. Prygarin, Mandelstam cuts and light-like Wilson loops in N = 4 SUSY, Phys. Rev.D 83 (2011) 045020 [arXiv:1008.1016] [INSPIRE].
[49] L. Lipatov and A. Prygarin, BFKL approach and six-particle MHV amplitude in N = 4 super Yang-Mills, Phys. Rev.D 83 (2011) 125001 [arXiv:1011.2673] [INSPIRE].
[50] J. Bartels, L. Lipatov and A. Prygarin, MHV amplitude for 3 → 3 gluon scattering in Regge limit, Phys. Lett.B 705 (2011) 507 [arXiv:1012.3178] [INSPIRE]. · doi:10.1016/j.physletb.2011.09.061
[51] V. Fadin and L. Lipatov, BFKL equation for the adjoint representation of the gauge group in the next-to-leading approximation at N = 4 SUSY, Phys. Lett.B 706 (2012) 470 [arXiv:1111.0782] [INSPIRE]. · doi:10.1016/j.physletb.2011.11.048
[52] A. Prygarin, M. Spradlin, C. Vergu and A. Volovich, All two-loop MHV amplitudes in multi-Regge kinematics from applied symbology, Phys. Rev.D 85 (2012) 085019 [arXiv:1112.6365] [INSPIRE].
[53] J. Bartels, A. Kormilitzin, L. Lipatov and A. Prygarin, BFKL approach and 2 → 5 maximally helicity violating amplitude in \(\mathcal{N} = 4\) super-Yang-Mills theory, Phys. Rev.D 86 (2012) 065026 [arXiv:1112.6366] [INSPIRE].
[54] L. Lipatov, A. Prygarin and H.J. Schnitzer, The multi-Regge limit of NMHV amplitudes in N =4 SYM theory, JHEP01 (2013) 068 [arXiv:1205.0186] [INSPIRE]. · doi:10.1007/JHEP01(2013)068
[55] L.J. Dixon, C. Duhr and J. Pennington, Single-valued harmonic polylogarithms and the multi-Regge limit, JHEP10 (2012) 074 [arXiv:1207.0186] [INSPIRE]. · doi:10.1007/JHEP10(2012)074
[56] F.C.S. Brown, Single-valued multiple polylogarithms in one variable, C. R. Acad. Sci. Paris, Ser. I338 (2004) 527. · Zbl 1048.11053 · doi:10.1016/j.crma.2004.02.001
[57] J. Pennington, The six-point remainder function to all loop orders in the multi-Regge limit, JHEP01 (2013) 059 [arXiv:1209.5357] [INSPIRE]. · doi:10.1007/JHEP01(2013)059
[58] S. Laporta and E. Remiddi, Analytic treatment of the two loop equal mass sunrise graph, Nucl. Phys.B 704 (2005) 349 [hep-ph/0406160] [INSPIRE]. · Zbl 1119.81356 · doi:10.1016/j.nuclphysb.2004.10.044
[59] S. Müller-Stach, S. Weinzierl and R. Zayadeh, A second-order differential equation for the two-loop sunrise graph with arbitrary masses, Commun. Num. Theor. Phys.6 (2012) 203 [arXiv:1112.4360] [INSPIRE]. · Zbl 1275.81069 · doi:10.4310/CNTP.2012.v6.n1.a5
[60] S. Caron-Huot and K.J. Larsen, Uniqueness of two-loop master contours, JHEP10 (2012) 026 [arXiv:1205.0801] [INSPIRE]. · doi:10.1007/JHEP10(2012)026
[61] N. Arkani-Hamed et al., Scattering amplitudes and the positive Grassmannian, arXiv:1212.5605 [INSPIRE]. · Zbl 0391.76060
[62] A.E. Lipstein and L. Mason, From the holomorphic Wilson loop to ‘dlog’ loop-integrands for super-Yang-Mills amplitudes, JHEP05 (2013) 106 [arXiv:1212.6228] [INSPIRE]. · Zbl 1342.81216 · doi:10.1007/JHEP05(2013)106
[63] A.E. Lipstein and L. Mason, From dlogs to dilogs; the super Yang-Mills MHV amplitude revisited, arXiv:1307.1443 [INSPIRE].
[64] L.F. Alday, D. Gaiotto and J. Maldacena, Thermodynamic bubble ansatz, JHEP09 (2011) 032 [arXiv:0911.4708] [INSPIRE]. · Zbl 1301.81162 · doi:10.1007/JHEP09(2011)032
[65] A. Brandhuber, P. Heslop, V.V. Khoze and G. Travaglini, Simplicity of polygon Wilson loops in N = 4 SYM, JHEP01 (2010) 050 [arXiv:0910.4898] [INSPIRE]. · Zbl 1269.81083 · doi:10.1007/JHEP01(2010)050
[66] V. Del Duca, C. Duhr and V.A. Smirnov, A two-loop octagon Wilson loop in N = 4 SYM, JHEP09 (2010) 015 [arXiv:1006.4127] [INSPIRE]. · Zbl 1291.81240 · doi:10.1007/JHEP09(2010)015
[67] C. Anastasiou et al., Two-loop polygon Wilson loops in N = 4 SYM, JHEP05 (2009) 115 [arXiv:0902.2245] [INSPIRE]. · doi:10.1088/1126-6708/2009/05/115
[68] L.F. Alday and J. Maldacena, Null polygonal Wilson loops and minimal surfaces in anti-de-Sitter space, JHEP11 (2009) 082 [arXiv:0904.0663] [INSPIRE]. · doi:10.1088/1126-6708/2009/11/082
[69] Y. Hatsuda, K. Ito, K. Sakai and Y. Satoh, g-functions and gluon scattering amplitudes at strong coupling, JHEP04 (2011) 100 [arXiv:1102.2477] [INSPIRE]. · Zbl 1250.81122
[70] Y. Hatsuda, K. Ito and Y. Satoh, T-functions and multi-gluon scattering amplitudes, JHEP02 (2012) 003 [arXiv:1109.5564] [INSPIRE]. · Zbl 1309.81185 · doi:10.1007/JHEP02(2012)003
[71] Y. Hatsuda, K. Ito, K. Sakai and Y. Satoh, Six-point gluon scattering amplitudes from Z4-symmetric integrable model, JHEP09 (2010) 064 [arXiv:1005.4487] [INSPIRE]. · Zbl 1291.81253 · doi:10.1007/JHEP09(2010)064
[72] Y. Hatsuda, K. Ito and Y. Satoh, Null-polygonal minimal surfaces in AdS4from perturbed W minimal models, JHEP02 (2013) 067 [arXiv:1211.6225] [INSPIRE]. · Zbl 1342.81590 · doi:10.1007/JHEP02(2013)067
[73] S. Caron-Huot, Superconformal symmetry and two-loop amplitudes in planar N = 4 super Yang-Mills, JHEP12 (2011) 066 [arXiv:1105.5606] [INSPIRE]. · Zbl 1306.81082 · doi:10.1007/JHEP12(2011)066
[74] N. Arkani-Hamed, J.L. Bourjaily, F. Cachazo, S. Caron-Huot and J. Trnka, The all-loop integrand for scattering amplitudes in planar N = 4 SYM, JHEP01 (2011) 041 [arXiv:1008.2958] [INSPIRE]. · Zbl 1214.81141 · doi:10.1007/JHEP01(2011)041
[75] J.M. Drummond, J.M. Henn and J. Trnka, New differential equations for on-shell loop integrals, JHEP04 (2011) 083 [arXiv:1010.3679] [INSPIRE]. · Zbl 1250.81064 · doi:10.1007/JHEP04(2011)083
[76] L.J. Dixon, J.M. Drummond and J.M. Henn, The one-loop six-dimensional hexagon integral and its relation to MHV amplitudes in N = 4 SYM, JHEP06 (2011) 100 [arXiv:1104.2787] [INSPIRE]. · Zbl 1298.81168 · doi:10.1007/JHEP06(2011)100
[77] V. Del Duca, C. Duhr and V.A. Smirnov, The massless hexagon integral in D = 6 dimensions, Phys. Lett.B 703 (2011) 363 [arXiv:1104.2781] [INSPIRE]. · doi:10.1016/j.physletb.2011.07.079
[78] E. Remiddi and J. Vermaseren, Harmonic polylogarithms, Int. J. Mod. Phys.A 15 (2000) 725 [hep-ph/9905237] [INSPIRE]. · Zbl 0951.33003 · doi:10.1142/S0217751X00000367
[79] D.E. Radford, A natural ring basis for the shuffle algebra and an application to group schemes, J. Alg.58 (1979) 432. · Zbl 0409.16011 · doi:10.1016/0021-8693(79)90171-6
[80] A.B. Goncharov, Multiple polylogarithms and mixed Tate motives, math/0103059. · Zbl 0919.11080
[81] C. Bogner and F. Brown, Symbolic integration and multiple polylogarithms, PoS(LL2012)053 [arXiv:1209.6524] [INSPIRE].
[82] C. Duhr, H. Gangl and J.R. Rhodes, From polygons and symbols to polylogarithmic functions, JHEP10 (2012) 075 [arXiv:1110.0458] [INSPIRE]. · Zbl 1397.81355 · doi:10.1007/JHEP10(2012)075
[83] F. Chavez and C. Duhr, Three-mass triangle integrals and single-valued polylogarithms, JHEP11 (2012) 114 [arXiv:1209.2722] [INSPIRE]. · Zbl 1397.81071 · doi:10.1007/JHEP11(2012)114
[84] J. Drummond et al., Leading singularities and off-shell conformal integrals, JHEP08 (2013) 133 [arXiv:1303.6909] [INSPIRE]. · Zbl 1342.81574 · doi:10.1007/JHEP08(2013)133
[85] A. von Manteuffel and C. Studerus, Massive planar and non-planar double box integrals for light Nfcontributions to \(gg\to t\overline{t} \), JHEP10 (2013) 037 [arXiv:1306.3504] [INSPIRE]. · doi:10.1007/JHEP10(2013)037
[86] O. Schlotterer and S. Stieberger, Motivic multiple zeta values and superstring amplitudes, J. Phys.A 46 (2013) 475401 [arXiv:1205.1516] [INSPIRE]. · Zbl 1280.81112
[87] H.R.P. Ferguson and D.H. Bailey, A polynomial time, numerically stable integer relation algorithm, RNR Technical Report RNR-91-032, (1991).
[88] H.R.P. Ferguson, D.H. Bailey and S. Arno, Analysis of PSLQ, an integer relation finding algorithm, Math. Comput.68 (1999) 351. · Zbl 0927.11055 · doi:10.1090/S0025-5718-99-00995-3
[89] N. Beisert, B. Eden and M. Staudacher, Transcendentality and crossing, J. Stat. Mech.01 (2007) P01021 [hep-th/0610251] [INSPIRE].
[90] P. Vieira, private communication.
[91] N. Arkani-Hamed, S. Caron-Huot and J. Trnka, private communication.
[92] J. Golden, A.B. Goncharov, M. Spradlin, C. Vergu and A. Volovich, Motivic amplitudes and cluster coordinates, arXiv:1305.1617 [INSPIRE].
[93] J. Golden and M. Spradlin, The differential of all two-loop MHV amplitudes in \(\mathcal{N} = 4\) Yang-Mills theory, JHEP09 (2013) 111 [arXiv:1306.1833] [INSPIRE]. · Zbl 1342.81585 · doi:10.1007/JHEP09(2013)111
[94] J.M. Borwein, D.M. Bradley, D.J. Broadhurst and P. Lisoněk, Special values of multiple polylogarithms, Trans. Amer. Math. Soc.353 (2001) 907 [math/9910045] [INSPIRE]. · Zbl 1002.11093 · doi:10.1090/S0002-9947-00-02616-7
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.