×

Tr(\(F^3\)) supersymmetric form factors and maximal transcendentality. II: 0 \(<\mathcal{N}<4\) 4 super Yang-Mills. (English) Zbl 1405.81147

Summary: For part I see [ibid., Paper No. 76, 45 p. (2018; doi:10.1007/JHEP12(2018)076]. The study of form factors has many phenomenologically interesting applications, one of which is Higgs plus gluon amplitudes in QCD. Through effective field theory techniques these are related to form factors of various operators of increasing classical dimension. In this paper we extend our analysis of the first finite top-mass correction, arising from the operator Tr(\(F^3\)), from \(\mathcal{N}=4\) super Yang-Mills to theories with \( \mathcal{N} < 4\), for the case of three gluons and up to two loops. We confirm our earlier result that the maximally transcendental part of the associated Catani remainder is universal and equal to that of the form factor of a protected trilinear operator in the maximally supersymmetric theory. The terms with lower transcendentality deviate from the \( \mathcal{N} =4\) answer by a surprisingly small set of terms involving for example \(\zeta_2\), \(\zeta_3\) and simple powers of logarithms, for which we provide explicit expressions.

MSC:

81T60 Supersymmetric field theories in quantum mechanics
81U05 \(2\)-body potential quantum scattering theory
70S15 Yang-Mills and other gauge theories in mechanics of particles and systems
81V05 Strong interaction, including quantum chromodynamics

Software:

LiteRed

References:

[1] A. Brandhuber, M. Kostacińska, B. Penante and G. Travaglini, Higgs amplitudes from N = 4 super Yang-Mills theory, Phys. Rev. Lett.119 (2017) 161601 [arXiv:1707.09897] [INSPIRE]. · doi:10.1103/PhysRevLett.119.161601
[2] A. Brandhuber, M. Kostacinska, B. Penante and G. Travaglini, Tr(F3) supersymmetric form factors and maximal transcendentality. Part \[I.N \mathcal{N} = 4\] super Yang-Mills, JHEP12 (2018) 076[arXiv:1804.05703] [INSPIRE]. · Zbl 1405.81146
[3] D. Neill, Two-loop matching onto dimension eight operators in the Higgs-glue sector, arXiv:0908.1573 [INSPIRE].
[4] S. Dawson, I.M. Lewis and M. Zeng, Effective field theory for Higgs boson plus jet production, Phys. Rev.D 90 (2014) 093007 [arXiv:1409.6299] [INSPIRE].
[5] J.A. Gracey, Classification and one loop renormalization of dimension-six and dimension-eight operators in quantum gluodynamics, Nucl. Phys.B 634 (2002) 192 [Erratum ibid.B 696 (2004) 295] [hep-ph/0204266] [INSPIRE]. · Zbl 0995.81060
[6] A. Brandhuber, G. Travaglini and G. Yang, Analytic two-loop form factors in N = 4 SYM, JHEP05 (2012) 082 [arXiv:1201.4170] [INSPIRE]. · Zbl 1348.81400 · doi:10.1007/JHEP05(2012)082
[7] T. Gehrmann, M. Jaquier, E.W.N. Glover and A. Koukoutsakis, Two-loop QCD corrections to the helicity amplitudes for H → 3 partons, JHEP02 (2012) 056 [arXiv:1112.3554] [INSPIRE]. · Zbl 1309.81327 · doi:10.1007/JHEP02(2012)056
[8] B. Penante, B. Spence, G. Travaglini and C. Wen, On super form factors of half-BPS operators in N = 4 super Yang-Mills, JHEP04 (2014) 083 [arXiv:1402.1300] [INSPIRE]. · doi:10.1007/JHEP04(2014)083
[9] A. Brandhuber, B. Penante, G. Travaglini and C. Wen, The last of the simple remainders, JHEP08 (2014) 100 [arXiv:1406.1443] [INSPIRE]. · doi:10.1007/JHEP08(2014)100
[10] A. Brandhuber, M. Kostacińska, B. Penante, G. Travaglini and D. Young, The SU(2|3) dynamic two-loop form factors, JHEP08 (2016) 134 [arXiv:1606.08682] [INSPIRE]. · Zbl 1390.81306 · doi:10.1007/JHEP08(2016)134
[11] F. Loebbert, D. Nandan, C. Sieg, M. Wilhelm and G. Yang, On-shell methods for the two-loop dilatation operator and finite remainders, JHEP10 (2015) 012 [arXiv:1504.06323] [INSPIRE]. · Zbl 1388.81390 · doi:10.1007/JHEP10(2015)012
[12] N. Beisert, The SU(2|3) dynamic spin chain, Nucl. Phys.B 682 (2004) 487 [hep-th/0310252] [INSPIRE]. · Zbl 1036.82513 · doi:10.1016/j.nuclphysb.2003.12.032
[13] D. Chicherin and E. Sokatchev, Composite operators and form factors in N = 4 SYM, J. Phys.A 50 (2017) 275402 [arXiv:1605.01386] [INSPIRE]. · Zbl 1370.81114
[14] H. Elvang, Y.-T. Huang and C. Peng, On-shell superamplitudes in N < 4 SYM, JHEP09 (2011) 031 [arXiv:1102.4843] [INSPIRE]. · Zbl 1301.81120 · doi:10.1007/JHEP09(2011)031
[15] C. Anastasiou, Z. Bern, L.J. Dixon and D.A. Kosower, Planar amplitudes in maximally supersymmetric Yang-Mills theory, Phys. Rev. Lett.91 (2003) 251602 [hep-th/0309040] [INSPIRE]. · doi:10.1103/PhysRevLett.91.251602
[16] Z. Bern, M. Czakon, D.A. Kosower, R. Roiban and V.A. Smirnov, Two-loop iteration of five-point N = 4 super-Yang-Mills amplitudes, Phys. Rev. Lett.97 (2006) 181601 [hep-th/0604074] [INSPIRE]. · Zbl 1228.81213 · doi:10.1103/PhysRevLett.97.181601
[17] Z. Bern et al., The two-loop six-gluon MHV amplitude in maximally supersymmetric Yang-Mills theory, Phys. Rev.D 78 (2008) 045007 [arXiv:0803.1465] [INSPIRE].
[18] D. Neill, Analytic virtual corrections for Higgs transverse momentum spectrum at O(αs2/mt3) via unitarity methods, arXiv:0911.2707 [INSPIRE].
[19] Q. Jin and G. Yang, Analytic two-loop Higgs amplitudes in effective field theory and the maximal transcendentality principle, Phys. Rev. Lett.121 (2018) 101603 [arXiv:1804.04653] [INSPIRE]. · doi:10.1103/PhysRevLett.121.101603
[20] A. Brandhuber, O. Gurdogan, R. Mooney, G. Travaglini and G. Yang, Harmony of super form factors, JHEP10 (2011) 046 [arXiv:1107.5067] [INSPIRE]. · Zbl 1303.81111 · doi:10.1007/JHEP10(2011)046
[21] S. Catani, The singular behavior of QCD amplitudes at two loop order, Phys. Lett.B 427 (1998) 161 [hep-ph/9802439] [INSPIRE].
[22] Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, Fusing gauge theory tree amplitudes into loop amplitudes, Nucl. Phys.B 435 (1995) 59 [hep-ph/9409265] [INSPIRE]. · Zbl 1049.81644
[23] Z. Bern, L.J. Dixon and D.A. Kosower, One loop corrections to five gluon amplitudes, Phys. Rev. Lett.70 (1993) 2677 [hep-ph/9302280] [INSPIRE].
[24] J. Bedford, A. Brandhuber, B.J. Spence and G. Travaglini, Non-supersymmetric loop amplitudes and MHV vertices, Nucl. Phys.B 712 (2005) 59 [hep-th/0412108] [INSPIRE]. · Zbl 1109.81330 · doi:10.1016/j.nuclphysb.2005.01.032
[25] N. Arkani-Hamed, F. Cachazo and J. Kaplan, What is the simplest quantum field theory?, JHEP09 (2010) 016 [arXiv:0808.1446] [INSPIRE]. · Zbl 1291.81356 · doi:10.1007/JHEP09(2010)016
[26] D.J. Gross and F. Wilczek, Asymptotically free gauge theories — I, Phys. Rev.D 8 (1973) 3633 [INSPIRE].
[27] W.T. Giele and E.W.N. Glover, Higher order corrections to jet cross-sections in e+e−annihilation, Phys. Rev.D 46 (1992) 1980 [INSPIRE].
[28] Z. Kunszt, A. Signer and Z. Trócsányi, Singular terms of helicity amplitudes at one loop in QCD and the soft limit of the cross-sections of multiparton processes, Nucl. Phys.B 420 (1994) 550 [hep-ph/9401294] [INSPIRE].
[29] S. Catani and M.H. Seymour, The dipole formalism for the calculation of QCD jet cross-sections at next-to-leading order, Phys. Lett.B 378 (1996) 287 [hep-ph/9602277] [INSPIRE].
[30] S. Catani and M.H. Seymour, A general algorithm for calculating jet cross-sections in NLO QCD, Nucl. Phys.B 485 (1997) 291 [Erratum ibid.B 510 (1998) 503] [hep-ph/9605323] [INSPIRE].
[31] Z. Bern, L.J. Dixon and D.A. Kosower, Two-loop g → gg splitting amplitudes in QCD, JHEP08 (2004) 012 [hep-ph/0404293] [INSPIRE].
[32] G. Ferretti, R. Heise and K. Zarembo, New integrable structures in large-N QCD, Phys. Rev.D 70 (2004) 074024 [hep-th/0404187] [INSPIRE].
[33] D. Anselmi, M.T. Grisaru and A. Johansen, A critical behavior of anomalous currents, electric-magnetic universality and CFT in four-dimensions, Nucl. Phys.B 491 (1997) 221 [hep-th/9601023] [INSPIRE]. · Zbl 0925.81384 · doi:10.1016/S0550-3213(97)00108-9
[34] M. Bianchi, S. Kovacs, G. Rossi and Y.S. Stanev, On the logarithmic behavior in N = 4 SYM theory, JHEP08 (1999) 020 [hep-th/9906188] [INSPIRE]. · doi:10.1088/1126-6708/1999/08/020
[35] R.N. Lee, Presenting LiteRed: a tool for the Loop InTEgrals REDuction, arXiv:1212.2685 [INSPIRE].
[36] R.N. Lee, LiteRed 1.4: a powerful tool for reduction of multiloop integrals, J. Phys. Conf. Ser.523 (2014) 012059 [arXiv:1310.1145] [INSPIRE].
[37] T. Gehrmann and E. Remiddi, Differential equations for two loop four point functions, Nucl. Phys.B 580 (2000) 485 [hep-ph/9912329] [INSPIRE]. · Zbl 1071.81089
[38] T. Gehrmann and E. Remiddi, Two loop master integrals for γ⋆ → 3 jets: the planar topologies, Nucl. Phys.B 601 (2001) 248 [hep-ph/0008287] [INSPIRE].
[39] H. Johansson, G. Kälin and G. Mogull, Two-loop supersymmetric QCD and half-maximal supergravity amplitudes, JHEP09 (2017) 019 [arXiv:1706.09381] [INSPIRE]. · Zbl 1382.83120 · doi:10.1007/JHEP09(2017)019
[40] G. Kälin, G. Mogull and A. Ochirov, Two-loop N = 2 SQCD amplitudes with external matter from iterated cuts, arXiv:1811.09604 [INSPIRE]. · Zbl 1418.81087
[41] Z. Bern, A. De Freitas and L.J. Dixon, Two loop helicity amplitudes for gluon-gluon scattering in QCD and supersymmetric Yang-Mills theory, JHEP03 (2002) 018 [hep-ph/0201161] [INSPIRE].
[42] Z. Bern, A. De Freitas and L.J. Dixon, Two loop helicity amplitudes for quark gluon scattering in QCD and gluino gluon scattering in supersymmetric Yang-Mills theory, JHEP06 (2003) 028 [Erratum ibid.04 (2014) 112] [hep-ph/0304168] [INSPIRE].
[43] M. Bianchi, S. Kovacs, G. Rossi and Y.S. Stanev, Anomalous dimensions in N = 4 SYM theory at order g4, Nucl. Phys.B 584 (2000) 216 [hep-th/0003203] [INSPIRE]. · Zbl 0984.81155 · doi:10.1016/S0550-3213(00)00312-6
[44] A. Brandhuber, M. Kostacinska, B. Penante and G. Travaglini, Form factors in N = 4 supersymmetric Yang-Mills and Higgs plus gluon amplitudes, talk at the XXIII IFT Christmas workshop, https://workshops.ift.uam-csic.es/Xmas17/program, Madrid, Spain, (2017).
[45] A. Brandhuber, M. Kostacinska, B. Penante and G. Travaglini, Amplitudes and form factors from N = 4 super Yang-Mills to QCD, talk at the 2018 Bethe forum, https://indico.desy.de/indico/event/18613/, Bonn, Germany, (2018). · Zbl 1390.81306
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.