×

The p-widths of a surface. (English) Zbl 1533.58015

The \(p\)-widths \(\{\omega_p\}_{p=1}^\infty\) of a compact Riemannian manifold \(M=M^{n+1}\) can be viewed as one possible nonlinear counterpart of the well-known spectrum \(\{\lambda_p\}_{p=1}^\infty\) of the Laplace-Beltrami operator on \(M\). The analogy rests on the minimax characterisation, using Rayleigh quotients, of the eigenvalues of the Laplace-Beltrami operator. In the case of \(p\)-widths, a notion of area (for submanifolds of \(M\)) replaces the Dirichlet energy. Of particular relevance is the case of \(n\)-area (for hypersurfaces, that is, submanifolds of codimension \(1\)). The idea of \(p\)-widths was first introduced in [Lect. Notes Math. 1317, 132–184 (1988; Zbl 0664.41019)] by M. Gromov, and was studied by Gromov himself, and by L. Guth [Geom. Funct. Anal. 18, No. 6, 1917–1987 (2009; Zbl 1190.53038)]. In more recent years, \(p\)-widths have entered minimal surface theory with a decisive role in combination with (Almgren-Pitts) minmax constructions. In analogy with the classical Weyl law for the Laplace spectrum \(\{\lambda_p\}_{p=1}^\infty\), Y. Liokumovich et al. [Ann. Math. (2) 187, No. 3, 933–961 (2018; Zbl 1390.53034)] proved a Weyl law for the “volume spectrum” \(\{\omega_p\}_{p=1}^\infty\): \[ \lim_{p\to \infty} \omega_p \, p^{-\frac{1}{n+1}}= a(n) \text{Vol}(M)^{\frac{n}{n+1}}, \] for a dimensional constant \(a(n)\). While this was sufficient for striking applications to the existence of minimal hypersurfaces (e.g. [K. Irie et al., Ann. Math. (2) 187, No. 3, 963–972 (2018; Zbl 1387.53083)]), the explicit value of the constant \(a(n)\) had remained unknown, and the values of \(\omega_p\) had remained unknown even for the simplest choices of \(M\).
The present paper focuses on the case \(n=1\) (\(M\) is a closed surface) and analyses multi-parameter minmax constructions. It was known that \(\omega_p\) appears as the minmax value for the construction with \(p\) parameters, however, the geometric object produced by the minmax was only characterised as a geodesic net and \(\omega_p\) corresponds to the length of this net (counting possible integer-valued multiplicities). The first result in the present paper establishes that the geodesic net obtained from the minmax construction is actually a union of (connected) closed immersed geodesics, each appearing with integer-valued multiplicity. This greatly extends previous results, obtained by E. Calabi and J. Cao for \(p=1\) [J. Differ. Geom. 36, No. 3, 517–549 (1992; Zbl 0768.53019)] and by N. Sarquis Aiex for \(p\in \{1, 2, \dots, 8\}\) [Commun. Anal. Geom. 27, No. 2, 251–285 (2019; Zbl 1440.53043)]. The approach pursued in the paper uses a phase-transition regularization of the area-functional, commonly referred to as Allen-Cahn minmax. (Thanks to a result by A. Dey [Geom. Funct. Anal. 32, No. 5, 980–1040 (2022; Zbl 1515.53009)], the \(p\)-widths obtained via the Almgren-Pitts and Allen-Cahn minmax constructions are the same.) The choice of the potential in the present paper is, for analytic reasons, quite specific: it is based on the elliptic sine-Gordon equation.
The second main result is a computation of the full \(p\)-width spectrum of \(S^2\), the two-sphere with the standard round metric: \[ \omega_p(S^2) = 2 \pi \lfloor \sqrt{p} \rfloor. \] The corresponding geometric object is a union of \(\lfloor \sqrt{p} \rfloor\) great circles (possibly repeated). A corollary of this is the explicit determination of \(a(1)\) in the above Weyl law, \[ a(1)=\sqrt{\pi}. \] This is the first result of this kind for the nonlinear volume spectrum.

MathOverflow Questions:

Explicit eigenvalues of the Laplacian

MSC:

58J50 Spectral problems; spectral geometry; scattering theory on manifolds
58C40 Spectral theory; eigenvalue problems on manifolds
55M30 Lyusternik-Shnirel’man category of a space, topological complexity à la Farber, topological robotics (topological aspects)
53C42 Differential geometry of immersions (minimal, prescribed curvature, tight, etc.)
53C22 Geodesics in global differential geometry

Software:

MathOverflow

References:

[1] Allard, W. K.; Almgren, F. J. Jr., The structure of stationary one dimensional varifolds with positive density, Invent. Math., 34, 83-97 (1976) · Zbl 0339.49020
[2] Aiex, N. S., The width of ellipsoids, Commun. Anal. Geom., 27, 251-285 (2019) · Zbl 1440.53043
[3] Almgren, F. J. Jr., The homotopy groups of the integral cycle groups, Topology, 1, 257-299 (1962) · Zbl 0118.18503
[4] Bangert, V., On the existence of closed geodesics on two-spheres, Int. J. Math., 4, 1-10 (1993) · Zbl 0791.53048
[5] C. Bellettini, Multiplicity-1 minmax minimal hypersurfaces in manifolds with positive Ricci curvature, Comm. Pure Appl. Math., arXiv:2004.10112 (2020), to appear.
[6] Bellettini, C., Generic existence of multiplicity-1 minmax minimal hypersurfaces via Allen-Cahn, Calc. Var. Partial Differ. Equ., 61 (2022) · Zbl 1502.53093
[7] Birkhoff, G. D., Dynamical systems with two degrees of freedom, Trans. Am. Math. Soc., 18, 199-300 (1917) · JFM 46.1174.01
[8] Brendle, S., Embedded minimal tori in \(S^3\) and the Lawson conjecture, Acta Math., 211, 177-190 (2013) · Zbl 1305.53061
[9] Brendle, S., Minimal surfaces in \(S^3\): a survey of recent results, Bull. Math. Sci., 3, 133-171 (2013) · Zbl 1276.53008
[10] Calabi, E.; Guo Cao, J., Simple closed geodesics on convex surfaces, J. Differ. Geom., 36, 517-549 (1992) · Zbl 0768.53019
[11] Colding, T. H.; De Lellis, C., The min-max construction of minimal surfaces, Surveys in Differential Geometry, Vol. VIII, 75-107 (2003), Somerville: Int. Press, Somerville · Zbl 1051.53052
[12] Caju, R.; Gaspar, P.; Guaraco, M. A. M.; Matthiesen, H., Ground states of semilinear elliptic problems with applications to the Allen-Cahn equation on the sphere, Calc. Var. Partial Differ. Equ., 61 (2022) · Zbl 1492.35113
[13] Chodosh, O.; Ketover, D.; Maximo, D., Minimal hypersurfaces with bounded index, Invent. Math., 209, 617-664 (2017) · Zbl 1378.53072
[14] Chodosh, O.; Liokumovich, Y.; Spolaor, L., Singular behavior and generic regularity of min-max minimal hypersurfaces, Ars Inven. Anal., 2, 27 (2022)
[15] Colding, T. H.; Minicozzi, W. P., II. Width and mean curvature flow, Geom. Topol., 12, 2517-2535 (2008) · Zbl 1165.53363
[16] Chodosh, O.; Mantoulidis, C., Minimal surfaces and the Allen-Cahn equation on 3-manifolds: index, multiplicity, and curvature estimates, Ann. Math., 191, 213-328 (2020) · Zbl 1431.49045
[17] Cheng, D. R.; Zhou, X., Existence of curves with constant geodesic curvature in a Riemannian 2-sphere, Trans. Am. Math. Soc., 374, 9007-9028 (2021) · Zbl 1512.58008
[18] Dey, A., A comparison of the Almgren-Pitts and the Allen-Cahn min-max theory, Geom. Funct. Anal., 32, 980-1040 (2022) · Zbl 1515.53009
[19] De Lellis, C.; Pellandini, F., Genus bounds for minimal surfaces arising from min-max constructions, J. Reine Angew. Math., 644, 47-99 (2010) · Zbl 1201.53009
[20] De Lellis, C.; Tasnady, D., The existence of embedded minimal hypersurfaces, J. Differ. Geom., 95, 355-388 (2013) · Zbl 1284.53057
[21] del Pino, M.; Kowalczyk, M.; Pacard, F., Moduli space theory for the Allen-Cahn equation in the plane, Trans. Am. Math. Soc., 365, 721-766 (2013) · Zbl 1286.35018
[22] del Pino, M.; Kowalczyk, M.; Pacard, F.; Wei, J., Multiple-end solutions to the Allen-Cahn equation in \(\mathbf{R}^2 \), J. Funct. Anal., 258, 458-503 (2010) · Zbl 1203.35108
[23] del Pino, M.; Kowalczyk, M.; Wei, J., The Toda system and clustering interfaces in the Allen-Cahn equation, Arch. Ration. Mech. Anal., 190, 141-187 (2008) · Zbl 1163.35017
[24] del Pino, M.; Kowalczyk, M.; Wei, J.; Yang, J., Interface foliation near minimal submanifolds in Riemannian manifolds with positive Ricci curvature, Geom. Funct. Anal., 20, 918-957 (2010) · Zbl 1213.35219
[25] Fokas, A. S.; Lenells, J.; Pelloni, B., Boundary value problems for the elliptic sine-Gordon equation in a semi-strip, J. Nonlinear Sci., 23, 241-282 (2013) · Zbl 1267.35094
[26] Fokas, A. S.; Pelloni, B., The Dirichlet-to-Neumann map for the elliptic sine-Gordon equation, Nonlinearity, 25, 1011-1031 (2012) · Zbl 1241.35069
[27] Franks, J., Geodesics on \(S^2\) and periodic points of annulus homeomorphisms, Invent. Math., 108, 403-418 (1992) · Zbl 0766.53037
[28] Faddeev, L. D.; Takhtajan, L. A., Hamiltonian Methods in the Theory of Solitons (2007), Berlin: Springer, Berlin · Zbl 1111.37001
[29] Gaspar, P., The second inner variation of energy and the Morse index of limit interfaces, J. Geom. Anal., 30, 69-85 (2020) · Zbl 1443.53022
[30] Gaspar, P.; Guaraco, M. A. M., The Allen-Cahn equation on closed manifolds, Calc. Var. Partial Differ. Equ., 57 (2018) · Zbl 1396.53064
[31] Gaspar, P.; Guaraco, M. A. M., The Weyl law for the phase transition spectrum and density of limit interfaces, Geom. Funct. Anal., 29, 382-410 (2019) · Zbl 1416.53009
[32] Gutshabash, E. S.; Lipovskiĭ, V. D., A boundary value problem for a two-dimensional elliptic sine-Gordon equation and its application to the theory of the stationary Josephson effect, Zap. Nauč. Semin. LOMI, Vopr. Kvantovoj Teor. Polâ Stat. Fiz., 9, 53-62 (1990) · Zbl 0716.35076
[33] Gui, C.; Liu, Y.; Wei, J., On variational characterization of four-end solutions of the Allen-Cahn equation in the plane, J. Funct. Anal., 271, 2673-2700 (2016) · Zbl 1350.35076
[34] Grayson, M. A., Shortening embedded curves, Ann. Math, 129, 71-111 (1989) · Zbl 0686.53036
[35] Gromov, M., Dimension, nonlinear spectra and width, Geometric Aspects of Functional Analysis (1986/87), 132-184 (1988), Berlin: Springer, Berlin · Zbl 0664.41019
[36] Gromov, M., Isoperimetry of waists and concentration of maps, Geom. Funct. Anal., 13, 178-215 (2003) · Zbl 1044.46057
[37] Gromov, M., Singularities, expanders and topology of maps. I. Homology versus volume in the spaces of cycles, Geom. Funct. Anal., 19, 743-841 (2009) · Zbl 1195.58010
[38] Guaraco, M. A. M., Min-max for phase transitions and the existence of embedded minimal hypersurfaces, J. Differ. Geom., 108, 91-133 (2018) · Zbl 1387.49060
[39] Guaraco, M. A. M., Min-Max for the Allen-Cahn Equation and Other Topics (2019)
[40] Changfeng, G., Symmetry of some entire solutions to the Allen-Cahn equation in two dimensions, J. Differ. Equ., 252, 5853-5874 (2012) · Zbl 1250.35078
[41] Guth, L., Minimax problems related to cup powers and Steenrod squares, Geom. Funct. Anal., 18, 1917-1987 (2009) · Zbl 1190.53038
[42] Guth, L., Unexpected applications of polynomials in combinatorics, The Mathematics of Paul Erdős. I, 493-522 (2013), New York: Springer, New York
[43] Guth, L., Polynomial Methods in Combinatorics (2016), Providence: Am. Math. Soc., Providence · Zbl 1388.05003
[44] Heppes, A., On the partition of the 2-sphere by geodesic nets, Proc. Am. Math. Soc., 127, 2163-2165 (1999) · Zbl 0921.53017
[45] Hiesmayr, F., Spectrum and index of two-sided Allen-Cahn minimal hypersurfaces, Commun. Partial Differ. Equ., 43, 1541-1565 (2018) · Zbl 1462.53057
[46] F. Hiesmayr, Rigidity of low index solutions on \(S^3\) via a Frankel theorem for the Allen-Cahn equation, arXiv:2007.08701, 2020.
[47] Hingston, N., On the growth of the number of closed geodesics on the two-sphere, Int. Math. Res. Not., 9, 253-262 (1993) · Zbl 0809.53053
[48] Hirota, R., The Direct Method in Soliton Theory (2004), Cambridge: Cambridge University Press, Cambridge · Zbl 1099.35111
[49] Haslhofer, R.; Ketover, D., Minimal 2-spheres in 3-spheres, Duke Math. J., 168, 1929-1975 (2019) · Zbl 1426.49042
[50] Hass, J.; Morgan, F., Geodesic nets on the 2-sphere, Proc. Am. Math. Soc., 124, 3843-3850 (1996) · Zbl 0871.53038
[51] Hutchinson, J. E.; Tonegawa, Y., Convergence of phase interfaces in the van der Waals-Cahn-Hilliard theory, Calc. Var. Partial Differ. Equ., 10, 49-84 (2000) · Zbl 1070.49026
[52] Irie, K.; Marques, F.; Neves, A., Density of minimal hypersurfaces for generic metrics, Ann. Math., 187, 963-972 (2018) · Zbl 1387.53083
[53] Ivanov, A. O.; Tuzhilin, A. A., Analytic deformations of minimal networks, Fundam. Prikl. Mat., 21, 159-180 (2016)
[54] Ivanov, A. O.; Tuzhilin, A. A., Minimal networks: a review, Advances in Dynamical Systems and Control, 43-80 (2016), Cham: Springer, Cham · Zbl 1359.05117
[55] Jost, J., A nonparametric proof of the theorem of Lusternik and Schnirelman, Arch. Math. (Basel), 53, 497-509 (1989) · Zbl 0676.58018
[56] Kapouleas, N., Doubling and desingularization constructions for minimal surfaces, Surveys in Geometric Analysis and Relativity, 281-325 (2011), Somerville: Int. Press, Somerville · Zbl 1268.53007
[57] Ketover, D., Genus bounds for min-max minimal surfaces, J. Differ. Geom., 112, 555-590 (2019) · Zbl 1468.53057
[58] D. Ketover and Y. Liokumovich, On the existence of closed \({C}^{1,1}\) curves of constant curvature, 2019.
[59] Klingenberg, W., Lectures on Closed Geodesics (1978), Berlin: Springer, Berlin · Zbl 0397.58018
[60] Kowalczyk, M.; Liu, Y.; Pacard, F., The space of 4-ended solutions to the Allen-Cahn equation in the plane, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, 29, 761-781 (2012) · Zbl 1254.35219
[61] Kowalczyk, M.; Liu, Y.; Pacard, F., Towards classification of multiple-end solutions to the Allen-Cahn equation in \(\mathbf{R}^2 \), Netw. Heterog. Media, 7, 837-855 (2012) · Zbl 1262.35011
[62] Kowalczyk, M.; Liu, Y.; Pacard, F., The classification of four-end solutions to the Allen-Cahn equation on the plane, Anal. PDE, 6, 1675-1718 (2013) · Zbl 1287.35031
[63] Kowalczyk, M.; Liu, Y.; Pacard, F.; Wei, J., End-to-end construction for the Allen-Cahn equation in the plane, Calc. Var. Partial Differ. Equ., 52, 281-302 (2015) · Zbl 1311.35115
[64] D. Ketover, Y. Liokumovich and A. Song, On the existence of minimal Heegaard surfaces, arXiv:1911.07161, 2019.
[65] Ketover, D.; Marques, F. C.; Neves, A., The catenoid estimate and its geometric applications, J. Differ. Geom., 115, 1-26 (2020) · Zbl 1439.53064
[66] Kapouleas, N.; Wiygul, D., The index and nullity of the Lawson surfaces \(\xi_{g,1}\), Camb. J. Math., 8, 363-405 (2020) · Zbl 1437.53049
[67] Lang, S., Fundamentals of Differential Geometry (1999), New York: Springer, New York · Zbl 0932.53001
[68] Blaine Lawson, H. Jr., Complete minimal surfaces in \(S^3\), Ann. Math., 92, 335-374 (1970) · Zbl 0205.52001
[69] Y. Li, Existence of infinitely many minimal hypersurfaces in higher-dimensional closed manifolds with generic metrics, J. Differential Geom., arXiv:1901.08440 (2019), to appear.
[70] Y. Li, An improved Morse index bound of min-max minimal hypersurfaces, arXiv:2007.14506, 2020.
[71] Liokumovich, Y., Families of short cycles on Riemannian surfaces, Duke Math. J., 165, 1363-1379 (2016) · Zbl 1341.53072
[72] Liokumovich, Y.; Marques, F.; Neves, A., Weyl law for the volume spectrum, Ann. Math., 187, 933-961 (2018) · Zbl 1390.53034
[73] Lyusternik, L.; Snirel’man, L., Topological methods in variational problems and their application to the differential geometry of surfaces, Usp. Mat. Nauk, 2(1(17)), 166-217 (1947) · Zbl 1446.53052
[74] Y. Liokumovich and B. Staffa, Generic density of geodesic nets, 2021.
[75] Lusternik, L., Topology of functional spaces and calculus of variations in the large, Trav. Inst. Math. Steklov, 19, 100 (1947) · Zbl 0041.42902
[76] Y. Li and Z. Wang, Generic regularity of minimal hypersurfaces in dimension 8, arXiv:2012.05401, 2020.
[77] Liu, Y.; Wei, J., Classification of finite Morse index solutions to the elliptic sine-Gordon equation in the plane, Rev. Mat. Iberoam., 38, 355-432 (2022) · Zbl 1486.35196
[78] Mantoulidis, C., Allen-Cahn min-max on surfaces, J. Differ. Geom., 117, 93-135 (2021) · Zbl 1459.35179
[79] MathOverflow, Explicit eigenvalues of the Laplacian, 2015, https://mathoverflow.net/questions/219109/explicit-eigenvalues-of-the-laplacian. Accessed 19 July 2021.
[80] F. C. Marques, R. Montezuma and A. Neves, Morse inequalities for the area functional, J. Differential Geom., arXiv:2003.01301 (2020), to appear.
[81] Marques, F. C.; Neves, A., Min-max theory and the Willmore conjecture, Ann. Math., 179, 683-782 (2014) · Zbl 1297.49079
[82] Marques, F. C.; Neves, A., Morse index and multiplicity of min-max minimal hypersurfaces, Camb. J. Math., 4, 463-511 (2016) · Zbl 1367.49036
[83] Marques, F. C.; Neves, A., Existence of infinitely many minimal hypersurfaces in positive Ricci curvature, Invent. Math., 209, 577-616 (2017) · Zbl 1390.53064
[84] Marques, F. C.; Neves, A., Morse index of multiplicity one min-max minimal hypersurfaces, Adv. Math., 378 (2021) · Zbl 1465.53076
[85] Marques, F. C.; Neves, A.; Song, A., Equidistribution of minimal hypersurfaces for generic metrics, Invent. Math., 216, 421-443 (2019) · Zbl 1419.53061
[86] Marston, M., The Calculus of Variations in the Large (1996), Providence: Am. Math. Soc., Providence
[87] Michelat, A.; Rivière, T., A viscosity method for the min-max construction of closed geodesics, ESAIM Control Optim. Calc. Var., 22, 1282-1324 (2016) · Zbl 1353.49006
[88] Nabutovsky, A.; Parsch, F., Geodesic Nets: Some Examples and Open Problems, 1-25 (2020) · Zbl 1519.53031
[89] Nabutovsky, A.; Rotman, R., Volume, diameter and the minimal mass of a stationary 1-cycle, Geom. Funct. Anal., 14, 748-790 (2004) · Zbl 1073.53057
[90] Nabutovsky, A.; Rotman, R., Shapes of geodesic nets, Geom. Topol., 11, 1225-1254 (2007) · Zbl 1134.53018
[91] Novokshenov, V. Yu.; Shagalov, A. G., Bound states of the elliptic sine-Gordon equation, Physica D, 106, 81-94 (1997) · Zbl 0939.35172
[92] C. Nurser, Low min-max widths of the round three-sphere, PhD thesis, Imperial College London, 180 Queen’s Gate, London SW7 2BZ, 2016.
[93] F. Parsch, Geodesic Nets with Few Boundary Points, ProQuest LLC, Ann Arbor, MI Ph.D. Thesis, University of Toronto (Canada), Ann Arbor (2019).
[94] Pelloni, B., Spectral analysis of the elliptic sine-Gordon equation in the quarter plane, Teor. Mat. Fiz., 160, 189-201 (2009) · Zbl 1179.35292
[95] Pitts, J. T., Existence and Regularity of Minimal Surfaces on Riemannian Manifolds (1981), Princeton/Tokyo: Princeton University Press/University of Tokyo Press, Princeton/Tokyo · Zbl 0462.58003
[96] Poincaré, H., Sur les lignes géodésiques des surfaces convexes, Trans. Am. Math. Soc., 6, 237-274 (1905) · JFM 36.0669.01
[97] Pelloni, B.; Pinotsis, D. A., The elliptic sine-Gordon equation in a half plane, Nonlinearity, 23, 77-88 (2010) · Zbl 1182.35108
[98] Pigati, A.; Rivière, T., A proof of the multiplicity 1 conjecture for min-max minimal surfaces in arbitrary codimension, Duke Math. J., 169, 2005-2044 (2020) · Zbl 1468.49045
[99] Pigati, A.; Rivière, T., The regularity of parametrized integer stationary varifolds in two dimensions, Commun. Pure Appl. Math., 73, 1981-2042 (2020) · Zbl 1512.49039
[100] Pigati, A.; Stern, D., Minimal submanifolds from the Abelian Higgs model, Invent. Math., 223, 1027-1095 (2021) · Zbl 1467.53025
[101] Tristan, R., A viscosity method in the min-max theory of minimal surfaces, Publ. Math. Inst. Hautes Études Sci., 126, 177-246 (2017) · Zbl 1387.53084
[102] Tristan, R., Lower semi-continuity of the index in the viscosity method for minimal surfaces, Int. Math. Res. Not., 8, 5651-5675 (2021) · Zbl 1478.53110
[103] A. Ramírez-Luna, Orientability of min-max hypersurfaces in manifolds of positive Ricci curvature, arXiv:1907.12519, 2019.
[104] Rotman, R., The length of a shortest geodesic net on a closed Riemannian manifold, Topology, 46, 343-356 (2007) · Zbl 1125.53034
[105] Simon, L., Lectures on Geometric Measure Theory (1983), Canberra: Australian National University, Centre for Mathematical Analysis, Canberra · Zbl 0546.49019
[106] Smale, S., An infinite dimensional version of Sard’s theorem, Am. J. Math., 87, 861-866 (1965) · Zbl 0143.35301
[107] F. Smith, On the existence of embedded minimal two spheres in the three sphere, endowed with an arbitrary Riemannian metric, Ph.D. Thesis, University of Melbourne, Supervisor: Leon Simon, 1982.
[108] A. Song, A dichotomy for minimal hypersurfaces in manifolds thick at infinity, Ann. Sci. Ec. Norm. Supér. (2019), to appear.
[109] Song, A., Existence of infinitely many minimal hypersurfaces in closed manifolds, Ann. Math., 197, 859-895 (2023) · Zbl 1526.53013
[110] Schoen, R.; Simon, L., Regularity of stable minimal hypersurfaces, Commun. Pure Appl. Math., 34, 741-797 (1981) · Zbl 0497.49034
[111] B. Staffa, Bumpy Metrics Theorem for Geodesic Nets, 2021.
[112] Song, A.; Zhou, X., Generic scarring for minimal hypersurfaces along stable hypersurfaces, Geom. Funct. Anal., 31, 948-980 (2021) · Zbl 1479.53072
[113] Taimanov, I. A., On the existence of three nonintersecting closed geodesics on manifolds that are homeomorphic to the two-dimensional sphere, Izv. Akad. Nauk SSSR, Ser. Mat., 56, 605-635 (1992) · Zbl 0771.53027
[114] Taubes, C. H., On the equivalence of the first and second order equations for gauge theories, Commun. Math. Phys., 75, 207-227 (1980) · Zbl 0448.58029
[115] Tonegawa, Y., On stable critical points for a singular perturbation problem, Commun. Anal. Geom., 13, 439-459 (2005) · Zbl 1105.35008
[116] Tonegawa, Y.; Wickramasekera, N., Stable phase interfaces in the van der Waals-Cahn-Hilliard theory, J. Reine Angew. Math., 668, 191-210 (2012) · Zbl 1244.49077
[117] Wang, K., Some remarks on the structure of finite Morse index solutions to the Allen-Cahn equation in \(\mathbf{R}^2 \), NoDEA Nonlinear Differential Equations Appl., 24 (2017) · Zbl 1382.35109
[118] Z. Wang, Deformations of singular minimal hypersurfaces I, isolated singularities, arXiv:2011.00548, 2020.
[119] White, B., The space of minimal submanifolds for varying Riemannian metrics, Indiana Univ. Math. J., 40, 161-200 (1991) · Zbl 0742.58009
[120] White, B., On the bumpy metrics theorem for minimal submanifolds, Am. J. Math., 139, 1149-1155 (2017) · Zbl 1379.53084
[121] B. White, Personal communication, June 2021.
[122] Wickramasekera, N., A general regularity theory for stable codimension 1 integral varifolds, Ann. Math., 179, 843-1007 (2014) · Zbl 1307.58005
[123] Wang, K.; Wei, J., Finite Morse index implies finite ends, Commun. Pure Appl. Math., 72, 1044-1119 (2019) · Zbl 1418.35190
[124] Wang, K.; Wei, J., Second order estimate on transition layers, Adv. Math., 358 (2019) · Zbl 1428.35023
[125] Xu, G., The \((p,m)\)-width of Riemannian manifolds and its realization, Indiana Univ. Math. J., 67, 999-1023 (2018) · Zbl 1433.53093
[126] Zhou, X., Min-max minimal hypersurface in \((M^{n+1},g)\) with \(Ric>0\) and \(2 \leq n\leq 6\), J. Differ. Geom., 100, 129-160 (2015) · Zbl 1331.53092
[127] Zhou, X., Min-max hypersurface in manifold of positive Ricci curvature, J. Differ. Geom., 105, 291-343 (2017) · Zbl 1367.53054
[128] Zhou, X., On the multiplicity one conjecture in min-max theory, Ann. Math., 192, 767-820 (2020) · Zbl 1461.53051
[129] Zhou, X.; Zhu, J. J., Min-max theory for constant mean curvature hypersurfaces, Invent. Math., 218, 441-490 (2019) · Zbl 1432.53086
[130] Zhou, X.; Zhu, J., Existence of hypersurfaces with prescribed mean curvature I—generic min-max, Camb. J. Math., 8, 311-362 (2020) · Zbl 1446.35272
[131] Zhou, X.; Zhu, J. J., Min-max theory for networks of constant geodesic curvature, Adv. Math., 361 (2020) · Zbl 1430.90558
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.