×

A viscosity method in the min-max theory of minimal surfaces. (English) Zbl 1387.53084

The aim of this work is to present a direct min-max approach for constructing minimal surfaces in a given closed submanifold \(N^n\) of \(\mathbb{R}^m\). Let \(\mathcal{E}_{\Sigma, p}\) be the space of \(W^{2,2p}\)-immersions \(\vec{\Phi}\) of a given closed surface \(\Sigma\) for \(p>1\) into \(N^n\subset \mathbb{R}^m\). For such immersions consider the relaxed energy \[ \mathrm A^\sigma(\vec{\Phi}):=\;\mathrm{Area}(\vec{\Phi})+\sigma^2\int_\Sigma[1+|\vec{\mathbf{I}}_{\vec{\Phi}}|^2]^p \mathrm{dvol}_{g_{\vec{\Phi}}}, \] where \(g_{\vec{\Phi}}\) and \(\vec{\mathbf{I}}_{\vec{\Phi}}\) are respectively the first and second fundamental forms of \(\vec{\Phi}\) in \(N^n\). The energy A\(^\sigma\) is intrinsic in the sense that it is invariant under re-parametrization of \(\vec{\Phi}\), and for a fixed \(\sigma\neq 0\) the Lagrangian A\(^\sigma\) satisfies the Palais-Smale condition. The main results of this paper are the following theorems.
Theorem I.1. Let \(N^n\) be a closed \(n\)-dimensional submanifold of \(\mathbb{R}^m\) with \(3\leq n\leq m-1\). Let \(\Sigma\) be an arbitrary closed Riemannian 2-dimensional manifold. Let \(\sigma_k\to 0\) and let \(\vec{\Phi}_k\) be a sequence of critical points of the energy \(\mathrm{A}^{\sigma_k}(\vec{\Phi})\) in the space of \(W^{2,2p}\)-immersions \(\vec{\Phi}\) of \(\Sigma\) and satisfying the entropy condition \[ \sigma^2_k\int_\Sigma[1+|\vec{\mathbf{I}}_{\vec{\Phi}_k}|^2]^p \mathrm{dvol}_{g_{\vec{\Phi}_k}}=o\left(\frac{1}{\log\sigma_k^{-1}}\right). \] Then, modulo extraction of a subsequence, there exists a closed Riemann surface \((S, h_0)\) with \(\mathrm{genus}(S)\leq \mathrm{genus}(\Sigma)\) and a conformal integer target harmonic map \((\vec{\Phi}_\infty, N)\) from \(S\) into \(N^n\) such that \[ \lim_{k\to+\infty} \mathrm{A}^{\sigma_k}(\vec{\Phi}_k)=\frac 12\int_S N|d \vec{\Phi}_\infty|^2_{h_0}\mathrm{dvol}_{h_0}. \] Moreover, the oriented varifold associated to \(\vec{\Phi}_k\) converges in the sense of Radon measures towards the stationary integer varifold associated to \((\vec{\Phi}_\infty, N)\).
According to the main results of the paper [the author, Calc. Var. Partial Differ. Equ. 56, No. 4, Paper No. 117, 15 p. (2017; Zbl 1380.58013)], the limit \((\vec{\Phi}_\infty, N)\) is a smooth minimal branched immersion equipped with a smooth integer valued multiplicity.
Theorem I.2. Let \(\mathcal{A}\) be an admissible family in the space of \(W^{2,2p}\)-immersions of \(\Sigma\) into a closed submanifold \(N^n\) of \(\mathbb{R}^m\). Assume \[ \inf_{A\in\mathcal{A}}\max_{\vec{\Phi}\in A}\mathrm{Area}(\vec{\Phi})=\beta^0>0, \] then there exists a closed Riemann surface \((S, h_0)\) with \(\mathrm{genus}(S)\leq \mathrm{genus}(\Sigma)\) and a conformal integer target harmonic map \((\vec{\Phi}_\infty, N)\) from \(S\) into \(N^n\) such that \[ \frac 12\int_S N|d \vec{\Phi}_\infty|^2_{h_0}\mathrm{dvol}_{h_0}=\beta^0. \]

MSC:

53C42 Differential geometry of immersions (minimal, prescribed curvature, tight, etc.)
49Q05 Minimal surfaces and optimization
49K35 Optimality conditions for minimax problems
49L25 Viscosity solutions to Hamilton-Jacobi equations in optimal control and differential games

Citations:

Zbl 1380.58013

References:

[1] W. K. Allard, On the first variation of a varifold, Ann. Math. (2), 95 (1972), 417-491. · Zbl 0252.49028 · doi:10.2307/1970868
[2] Y. Bernard, Noether’s theorem and the Willmore functional, 2014, arXiv:1409.6894. · Zbl 1343.58008
[3] Y. Bernard and T. Rivière, Energy quantization for Willmore surfaces and applications, Ann. Math. (2), 180 (2014), 87-136. · Zbl 1325.53014 · doi:10.4007/annals.2014.180.1.2
[4] Y. Bernard and T. Rivière, Uniform regularity results for critical and subcritical surface energies, in preparation. · Zbl 1445.58007
[5] Colding, T. H.; Lellis, C., The min-max construction of minimal surfaces, Boston, MA, 2002, Somerville · Zbl 1051.53052
[6] T. H. Colding and W. P. Minicozzi II, Width and mean curvature flow, Geom. Topol., 12 (2008), 2517-2535. · Zbl 1165.53363 · doi:10.2140/gt.2008.12.2517
[7] T. H. Colding and W. P. Minicozzi II, Width and finite extinction time of Ricci flow, Geom. Topol., 12 (2008), 2537-2586. · Zbl 1161.53352 · doi:10.2140/gt.2008.12.2537
[8] C. De Lellis and F. Pellandini, Genus bounds for minimal surfaces arising from min-max constructions, J. Reine Angew. Math., 644 (2010), 47-99. · Zbl 1201.53009
[9] H. Federer, Geometric Measure Theory, Die Grundlehren der mathematischen Wissenschaften, vol. 153, Springer, New York, 1969. · Zbl 0176.00801
[10] P. Gaspar and M. A. M. Guaraco, The Allen-Cahn equation on closed manifolds, arXiv:1608.06575. · Zbl 1396.53064
[11] M. A. M. Guaraco, Min-max for phase transitions and the existence of embedded minimal hypersurfaces, arXiv:1505.06698. · Zbl 1387.49060
[12] M. W. Hirsch, Immersions of manifolds, Trans. Am. Math. Soc., 93 (1959), 242-276. · Zbl 0113.17202 · doi:10.1090/S0002-9947-1959-0119214-4
[13] C. Hummel, Gromov’s Compactness Theorem for Pseudo-Holomorphic Curves, Progress in Mathematics, vol. 151, Birkhäuser Verlag, Basel, 1997. · Zbl 0870.53002 · doi:10.1007/978-3-0348-8952-0
[14] J. E. Hutchinson, Second fundamental form for varifolds and the existence of surfaces minimising curvature, Indiana Univ. Math. J., 35 (1986), 45-71. · Zbl 0561.53008 · doi:10.1512/iumj.1986.35.35003
[15] J. E. Hutchinson and Y. Tonegawa, Convergence of phase interfaces in the van der Waals-Cahn-Hilliard theory, Calc. Var. Partial Differ. Equ., 10 (2000), 49-84. · Zbl 1070.49026 · doi:10.1007/PL00013453
[16] Y. Imayoshi and M. Taniguchi, An Introduction to Teichmüller Spaces, Springer, Tokyo, 1992, Translated and revised from the Japanese by the authors. · Zbl 0754.30001 · doi:10.1007/978-4-431-68174-8
[17] T. Iwaniec and G. Martin, Geometric Function Theory and Non-linear Analysis, Oxford Mathematical Monographs, The Clarendon Press/Oxford University Press, New York, 2001. · Zbl 1045.30011
[18] E. Kuwert, T. Lamm and Y.Li, Two dimensional curvature functionals with superquadratic growth, J. Eur. Math. Soc., 17 (2015), 3081-3111. · Zbl 1332.53011 · doi:10.4171/JEMS/580
[19] S. Lang, Fundamentals of Differential Geometry, Graduate Texts in Mathematics, vol. 191, Springer, New York, 1999. · Zbl 0932.53001
[20] J. Langer, A compactness theorem for surfaces with Lp \(L^p\)-bounded second fundamental form, Math. Ann., 270 (1985), 223-234. · Zbl 0564.58010 · doi:10.1007/BF01456183
[21] F. C. Liu, A Luzin type property of Sobolev functions, Indiana Univ. Math. J., 26 (1977), 645-651. · Zbl 0368.46036 · doi:10.1512/iumj.1977.26.26051
[22] F. C. Marques and A. Neves, Min-max theory and the Willmore conjecture, Ann. Math. (2), 179 (2014), 683-782. · Zbl 1297.49079 · doi:10.4007/annals.2014.179.2.6
[23] F. C. Marques and A. Neves, Existence of infinitely many minimal hypersurfaces in positive Ricci curvature, 2013, arXiv:1311.6501. · Zbl 1390.53064
[24] F. C. Marques and A. Neves, Morse index and multiplicity of min-max minimal hypersurfaces, Camb. J. Math., 4 (2016), 463-511. · Zbl 1367.49036 · doi:10.4310/CJM.2016.v4.n4.a2
[25] A. Michelat and T. Rivière, A viscosity method for the min-max construction of closed geodesics, ESAIM Control Optim. Calc. Var., 22 (2016), 1282-1324. · Zbl 1353.49006 · doi:10.1051/cocv/2016039
[26] A. Mondino and T. Rivière, Willmore spheres in compact Riemannian manifolds, Adv. Math., 232 (2013), 608-676. · Zbl 1294.30046 · doi:10.1016/j.aim.2012.09.014
[27] A. Mondino and T. Rivière, Immersed spheres of finite total curvature into manifolds, Adv. Calc. Var., 7 (2014), 493-538. · Zbl 1306.53049 · doi:10.1515/acv-2013-0106
[28] C. B. Morrey Jr., The problem of Plateau on a Riemannian manifold, Ann. Math., 49 (1948), 807-851. · Zbl 0033.39601 · doi:10.2307/1969401
[29] Palais, R., Critical point theory and the minmax principle, No. 15, 185-212 (1970), Providence · Zbl 0212.28902
[30] A. Pigati and T. Rivière, The regularity of parametrized integer 2-rectifiable stationary varifolds, 2017, arXiv:1708.02211. · Zbl 1512.49039
[31] J. T. Pitts, Existence and Regularity of Minimal Surfaces on Riemannian Manifolds, Princeton University Press/University of Tokyo Press, Princeton/Tokyo, 1981. · Zbl 0462.58003 · doi:10.1515/9781400856459
[32] Rivière, T., Weak immersions of surfaces with L \(2L^2\)-bounded second fundamental form, No. 22, 303-384 (2016), Providence · Zbl 1359.53002 · doi:10.1090/pcms/022/07
[33] T. Rivière, Analysis aspects of Willmore surfaces, Invent. Math., 174 (2008), 1-45. · Zbl 1155.53031 · doi:10.1007/s00222-008-0129-7
[34] T. Rivière, Lipschitz conformal immersions from degenerating Riemann surfaces with L \(2L^2\)-bounded second fundamental forms, Adv. Calc. Var., 6 (2013), 1-31. · Zbl 1304.30033 · doi:10.1515/acv-2012-0108
[35] T. Rivière, The regularity of Conformal Target Harmonic Maps, Calc. Var. Partial Differ. Equ., 56 (2017), 117 · Zbl 1380.58013 · doi:10.1007/s00526-017-1215-8
[36] T. Rivière, Minmax methods in the calculus of variations of curves and surfaces, Course given at Columbia in May 2016, https://people.math.ethz.ch/ riviere/minmax.html. · Zbl 1367.49036
[37] T. Rivière, Minmax hierarchies and minimal surfaces in manifolds, arXiv:1705.09848.
[38] J. Sacks and K. Uhlenbeck, The existence of minimal immersions of 2-spheres, Ann. Math. (2), 113 (1981), 1-24. · Zbl 0462.58014 · doi:10.2307/1971131
[39] L. Simon, Lectures on Geometric Measure Theory, Proceedings of the Centre for Mathematical Analysis, Australian National University, vol. 3, Australian National University, Centre for Mathematical Analysis, Canberra, 1983. · Zbl 0546.49019
[40] S. Smale, A classification of immersions of the two-sphere, Trans. Am. Math. Soc., 90 (1958), 281-290. · Zbl 0089.18102 · doi:10.1090/S0002-9947-1959-0104227-9
[41] F. Smith, On the existence of embedded minimal 2-spheres in the 3-sphere, endowed with an arbitrary Riemannian metric, supervisor L. Simon, University of Melbourne, 1982. · Zbl 1155.53031
[42] D. Stern, A natural min-max construction for Ginzburg-Landau functionals, arXiv:1612.00544. · Zbl 1359.53002
[43] D. Stern, Energy concentration for min-max solutions of the Ginzburg-Landau equations on manifolds with b1(M)≠\(0b_1(M)\ne 0\), arXiv:1704.00712. · Zbl 1161.53352
[44] A. H. Stone, Paracompactness and product spaces, Bull. Am. Math. Soc., 54 (1948), 977-982. · Zbl 0032.31403 · doi:10.1090/S0002-9904-1948-09118-2
[45] M. Struwe, The existence of surfaces of constant mean curvature with free boundaries, Acta Math., 160 (1988), 19-64. · Zbl 0646.53005 · doi:10.1007/BF02392272
[46] M. Struwe, Positive solutions of critical semilinear elliptic equations on non-contractible planar domains, J. Eur. Math. Soc., 2 (2000), 329-388. · Zbl 0982.35041 · doi:10.1007/s100970000023
[47] Y. Tonegawa and N. Wickramasekera, Stable phase interfaces in the van der Waals-Cahn-Hilliard theory, J. Reine Angew. Math. (Crelles J.), 2012, 191210 (2012). · Zbl 1244.49077
[48] X. Zhou, On the existence of min-max minimal torus, J. Geom. Anal., 20 (2010). · Zbl 1203.58001
[49] X. Zhou, On the existence of min-max minimal surface of genus g≥\(2g\ge 2, 2011\), arXiv:1111.6206. · Zbl 0252.49028
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.