×

Allen-Cahn min-max on surfaces. (English) Zbl 1459.35179

Author’s abstract: We use a min-max procedure on the Allen-Cahn energy functional to construct geodesics on closed, \(2\)-dimensional Riemannian manifolds, as motivated by the work of [M. A. M. Guaraco, J. Differ. Geom. 108, No. 1, 91–133 (2018; Zbl 1387.49060)]. Borrowing classical blowup and curvature estimates from geometric analysis, as well as novel Allen-Cahn curvature estimates due to [K. Wang and J. Wei, Commun. Pure Appl. Math. 72, No. 5, 1044–1119 (2019; Zbl 1418.35190)], we manage to study the fine structure of potential singular points at the diffuse level, and show that the problem reduces to that of understanding “entire” singularity models constructed by [M. del Pino et al., J. Differ. Geom. 93, No. 1, 67–131 (2013; Zbl 1275.53015)] with Morse index \(1.\) The argument is completed by a Morse index estimate on these singularity models.

MSC:

35J61 Semilinear elliptic equations
53A10 Minimal surfaces in differential geometry, surfaces with prescribed mean curvature
35J20 Variational methods for second-order elliptic equations

References:

[1] W. K. Allard and F. J. Almgren, Jr. The structure of stationary one dimensional varifolds with positive density.Invent. Math.34(1976), no. 2, 83-97, MR0425741, Zbl 0339.49020. · Zbl 0339.49020
[2] L. Ambrosio and X. Cabr´e. Entire solutions of semilinear elliptic equations inR3and a conjecture of De Giorgi.J. Amer. Math. Soc.13 (2000), no. 4, 725-739, MR1775735, Zbl 0968.35041. · Zbl 0968.35041
[3] Lipman Bers, Fritz John, and Martin Schechter.Partial differential equations. American Mathematical Society, Providence, R.I., 1979. With supplements by Lars G ˙arding and A. N. Milgram, With a preface by A. S. Householder, Reprint of the 1964 original, Lectures in Applied Mathematics, 3A, MR0598466, Zbl 0514.35001. · Zbl 0514.35001
[4] O. Chodosh and D. Maximo. On the topology and index of minimal surfaces.J. Differential Geom.104(2016), no. 3, 399-418, MR3568626, Zbl 1357.53016. · Zbl 1357.53016
[5] E. De Giorgi. Convergence problems for functionals and operators. In Proceedings of the International Meeting on Recent Methods in Nonlinear Analysis (Rome, 1978), pages 131-188. Pitagora, Bologna, 1979, MR0533166, Zbl 0405.49001. · Zbl 0405.49001
[6] M. del Pino, M. Kowalczyk, and F. Pacard. Moduli space theory for the Allen-Cahn equation in the plane.Trans. Amer. Math. Soc.365 (2013), no. 2, 721-766, MR2995371, Zbl 1286.35018. · Zbl 1286.35018
[7] M. del Pino, M. Kowalczyk, and J. Wei. On De Giorgi’s conjecture in dimensionN≥9.Ann. of Math. (2)174(2011), no. 3, 1485-1569, MR2846486, Zbl 1238.35019. · Zbl 1238.35019
[8] M. del Pino, M. Kowalczyk, and J. Wei. Entire solutions of the AllenCahn equation and complete embedded minimal surfaces of finite total curvature inR3.J. Differential Geom.93(2013), no. 1, 67-131, MR3019512, Zbl 1275.53015. · Zbl 1275.53015
[9] M. del Pino, M. Kowalczyk, J. Wei, and J. Yang. Interface foliation near minimal submanifolds in Riemannian manifolds with positive Ricci curvature.Geom. Funct. Anal.20(2010), no. 4, 918-957, MR2729281, Zbl 1213.35219. · Zbl 1213.35219
[10] H. del Rio Guerra, C. E. Garza-Hume, and P. Padilla. Geodesics, soap bubbles and pattern formation in Riemannian surfaces.J. Geom. Anal. 13(2003), no. 4, 595-604, MR2005155, Zbl 1085.49047. · Zbl 1085.49047
[11] A. Farina, L. Mari, and E. Valdinoci. Splitting theorems, symmetry results and overdetermined problems for Riemannian manifolds. Comm. Partial Differential Equations38(2013), no. 10, 1818-1862, MR3169764, Zbl 1287.58011. · Zbl 1287.58011
[12] N. Ghoussoub and C. Gui. On a conjecture of De Giorgi and some related problems.Math. Ann.311(1998), no. 3, 481-491, MR1637919, Zbl 0918.35046. · Zbl 0918.35046
[13] A. Grigor’yan, Y. Netrusov, and S.-T. Yau. Eigenvalues of elliptic operators and geometric applications. InSurveys in Differential Geometry. Vol. IX, volume 9 ofSurv. Differ. Geom., pages 147-217. Int. Press, Somerville, MA, 2004, MR2195408, Zbl 1061.58027. · Zbl 1050.53002
[14] M. A. M. Guaraco. Min-max for phase transitions and the existence of embedded minimal hypersurfaces.J. Differential Geom.108(2018), no. 1, 91-133, MR3743704, Zbl 1387.49060. · Zbl 1387.49060
[15] C. Gui. Symmetry of some entire solutions to the Allen-Cahn equation in two dimensions.J. Differential Equations252(2012), no. 11, 5853- 5874, MR2911416, Zbl 1250.35078. · Zbl 1250.35078
[16] J. E. Hutchinson and Y. Tonegawa. Convergence of phase interfaces in the van der Waals-Cahn-Hilliard theory.Calc. Var. Partial Differential Equations10(2000), no. 1, 49-84, MR1803974, Zbl 1070.49026. · Zbl 1070.49026
[17] M. Kowalczyk, Y. Liu, and F. Pacard. The space of 4-ended solutions to the Allen-Cahn equation in the plane.Ann. Inst. H. Poincar´e Anal. Non Lin´eaire29(2012), no. 5, 761-781, MR2971030, Zbl 1254.35219. · Zbl 1254.35219
[18] L. Lyusternik and L. Schnirelmman. Topological methods in variational problems and their application to the differential geometry of surfaces.Uspehi Matem. Nauk (N.S.)2(1947), no. 1(17), 166-217, MR0029532. · Zbl 1446.53052
[19] Y. Liu and J. Wei. A complete classification of finite Morse index solutions to elliptic sine-Gordon equation in the plane, arXiv preprint (2018) arXiv:1806.06921.
[20] Y. Liu, K. Wang, and J. Wei. Global minimizers of the Allen-Cahn equation in dimensionn≥8.J. Math. Pures Appl. (9)108(2017), no. 6, 818-840, MR3723158, Zbl 1380.35071. · Zbl 1380.35071
[21] C. Mantoulidis.Geometric variational problems in mathematical physics. PhD thesis, Stanford University, June 2017. · Zbl 1375.58017
[22] F. Pacard and J. Wei. Stable solutions of the Allen-Cahn equation in dimension 8 and minimal cones.J. Funct. Anal.264(2013), no. 5, 1131-1167, MR3010017, Zbl 1281.35046. · Zbl 1281.35046
[23] O. Savin. Regularity of flat level sets in phase transitions.Ann. of Math. (2)169(2009), no. 1, 41-78, MR2480601, Zbl 1180.35499. · Zbl 1180.35499
[24] L. Simon.Lectures on geometric measure theory, volume 3 ofProceedings of the Centre for Mathematical Analysis, Australian National University. Australian National University, Centre for Mathematical Analysis, Canberra, 1983, MR0756417, Zbl 0546.49019. · Zbl 0546.49019
[25] R. Schoen and L. Simon. Regularity of stable minimal hypersurfaces. Comm. Pure Appl. Math.34(1981), no. 6, 741-797, MR0634285, Zbl 0497.49034. · Zbl 0497.49034
[26] Y. Tonegawa. On stable critical points for a singular perturbation problem.Comm. Anal. Geom.13(2005), no. 2, 439-459, MR2154826, Zbl 1105.35008. · Zbl 1105.35008
[27] Y. Tonegawa and N. Wickramasekera. Stable phase interfaces in the van der Waals-Cahn-Hilliard theory.J. Reine Angew. Math.668 (2012), 191-210, MR2948876, Zbl 1244.49077. · Zbl 1244.49077
[28] K. Wang. A new proof of Savin’s theorem on Allen-Cahn equations.J. Eur. Math. Soc. (JEMS)19(2017), no. 10, 2997-3051, MR3713000, Zbl 1388.35069. · Zbl 1388.35069
[29] K. Wang. Some remarks on the structure of finite Morse index solutions to the Allen-Cahn equation inR2.NoDEA Nonlinear Differential Equations Appl.24(2017), no. 5, Art. 58, 17 pp., MR3690656, Zbl 1382.35109. · Zbl 1382.35109
[30] K. Wang and J. Wei. Finite Morse index implies finite ends.Comm. Pure Appl. Math.72(2019), no. 5, 1044-1119, MR3935478, Zbl 1418.35190. · Zbl 1418.35190
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.