×

Algebra and geometry of link homology: lecture notes from the IHES 2021 Summer School. (English) Zbl 1529.14001

From the authors’ abstract: E. Gorsky, O. Kivinen, and J. Simental gives an expository “lectures of the first named author at 2021 IHES Summer School on ‘Enumerative Geometry, Physics and Representation Theory’ with additional details and references. They cover the definition of Khovanov-Rozansky triply graded homology, its basic properties and recent advances, as well as three algebro-geometric models for link homology: braid varieties, Hilbert schemes of singular curves and affine Springer fibers, and Hilbert schemes of points on the plane.”
This is a very well-written notes suitable for graduate students to experts in mathematical physics and representation theory.

MSC:

14C05 Parametrization (Chow and Hilbert schemes)
57K18 Homology theories in knot theory (Khovanov, Heegaard-Floer, etc.)

References:

[1] M.Aganagic and S.Shakirov, Refined Chern-Simons theory and knot homology, String‐Math, 2011, Proc. Sympos. Pure Math., vol. 85, Amer. Math. Soc., Providence, RI, 2012, pp. 3-31.
[2] J.Alexander, A lemma on a system of knotted curves, Proc. Nat. Acad. Sci. USA.9 (1923), 93-95. · JFM 49.0408.03
[3] P. B.Alvarez and I.Losev, Affine Springer Fibers, Procesi bundles, and Cherednik algebras, arXiv: 2104.09543.
[4] E. A.Bartolo, J. C.Ruber, and J. C.Agustín, Braid monodromy and topology of plane curves, Duke Math. J.118 (2003), no. 2, 261-278. · Zbl 1058.14053
[5] F.Bergeron, A.Garsia, E. S.Leven, and G.Xin, Compositional \((km,kn)\)‐shuffle conjectures, Int. Math. Res. Not. IMRN (2016), no. 14, 4229-4270. · Zbl 1404.05213
[6] R.Bezrukavnikov, P. B.Alvarez, P.Shan, and E.Vasserot, A geometric realization of the center of the small quantum group, arXiv: 2205.05951.
[7] R.Bezrukavnikov and K.Tolmachov, Monodromic model for Khovanov-Rozansky homology, J. Reine Angew. Math.787 (2022), 79-124. · Zbl 1522.14024
[8] J.Birman, Braids, links, and mapping class groups. Annals of Mathematics Studies, No. 82. Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1974. ix+228 pp.
[9] J.Blasiak, M.Haiman, J.Morse, A.Pun, and G.Seelinger, A shuffle theorem for paths under any line, arXiv: 2102.07931. · Zbl 1509.05176
[10] P.Boalch, Geometry and braiding of Stokes data; fission and wild character varieties, Ann. of Math. (2)179 (2014), no. 1, 301-365. · Zbl 1283.53075
[11] R.Bott, H.Shulman, and J.Stasheff, On the de Rham theory of certain classifying spaces, Adv. Math.20 (1976), no. 1, 43-56. · Zbl 0342.57016
[12] T.Braden, A.Licata, N.Proudfoot, and B.Webster, Quantizations of conical symplectic resolutions II: category \(\mathcal{O}\) and symplectic duality, Astérisque384 (2016), 75-179. (With an appendix by I. Losev.) · Zbl 1360.53001
[13] T.Braden, N.Proudfoot, and B.Webster, Quantizations of conical symplectic resolutions I: local and global structure, Astérisque384 (2016), 1-73. · Zbl 1360.53001
[14] A.Braverman, M.Finkelberg, and H.Nakajima, Towards a mathematical definition of Coulomb branches of 3‐dimensional \(N=4\) gauge theories, II, Adv. Theor. Math. Phys.22 (2018), no. 5, 1071-1147. · Zbl 1479.81043
[15] A.Braverman, M.Finkelberg, and H.Nakajima, Coulomb branches of 3d \(N=4\) quiver gauge theories and slices in the affine Grassmannian, Adv. Theor. Math. Phys.23 (2019), no. 1, 75-166. (With two appendices by Braverman, Finkelberg, Joel Kamnitzer, Ryosuke Kodera, Nakajima, Ben Webster and Alex Weekes.) · Zbl 1479.81044
[16] T.Bridgeland, A.King, and M.Reid, The McKay correspondence as an equivalence of derived categories, J. Amer. Math. Soc.14 (2001), no. 3, 535-554. · Zbl 0966.14028
[17] M.Brion, Lectures on the geometry of flag varieties. Topics in cohomological studies of algebraic varieties, Trends Math., Birkhäuser, Basel, 2005, pp. 33-85. · Zbl 1487.14105
[18] M.Broué and J.Michel, Sur certains éléments réguliers des groupes de Weyl et les variétiés de Deligne‐Lusztig associées. Finite reductive groups: related structures and representations, M.Cabanes (ed.) (ed.), Birkhäuser, Boston, 1997, pp. 73-139. · Zbl 1029.20500
[19] R.Casals, E.Gorsky, M.Gorsky, I.Le, L.Shen, and J.Simental, Cluster structures on braid varieties, arXiv: 2207.11607.
[20] R.Casals, E.Gorsky, M.Gorsky, and J.Simental, Algebraic weaves and braid varieties, arXiv: 2012.06931.
[21] R.Casals, E.Gorsky, M.Gorsky, and J.Simental, Positroid links and braid varieties, arXiv: 2105.13948.
[22] R.Casals and L.Ng, Braid loops with infinite monodromy on the Legendrian contact dga, arXiv: 2101.02318.
[23] R.Casals and D.Weng, Microlocal theory of Legendrian links and cluster algebras, arXiv: 2207.11607.
[24] M.deCataldo, T.Hausel, and L.Migliorini, Topology of Hitchin systems and Hodge theory of character varieties: the case \(A_1\), Ann. of Math. (2)175 (2012), no. 3, 1329-1407. · Zbl 1375.14047
[25] Y.Chekanov, Differential algebra of Legendrian links, Invent. Math.150 (2002), no. 3, 441-483. · Zbl 1029.57011
[26] I.Cherednik, Jones polynomials of torus knots via DAHA, Int. Math. Res. Not. IMRN (2013), no. 23, 5366-5425. · Zbl 1329.57019
[27] P.Deligne, Action du groupe des tresses sur une catégorie, Invent. Math.128 (1997), 159-175. · Zbl 0879.57017
[28] P.Deligne and G.Lusztig, Representations of reductive groups over finite fields, Ann. of Math. (2)103 (1976), no. 1, 103-161. · Zbl 0336.20029
[29] N.Dunfield, S.Gukov, and J.Rasmussen, The superpolynomial for knot homologies, Experiment. Math.15 (2006), no. 2, 129-159. · Zbl 1118.57012
[30] D.Eisenbud and W.Neumann, Three‐dimensional link theory and invariants of plane curve singularities, Annals of Mathematics Studies, vol. 110, Princeton University Press, Princeton, NJ, 1985. · Zbl 0628.57002
[31] B.Elias and M.Hogancamp, On the computation of torus link homology, Compos. Math.155 (2019), no. 1, 164-205. · Zbl 1477.57013
[32] B.Elias, S.Makisumi, U.Thiel, and G.Williamson, Introduction to Soergel bimodules. RSME Springer Series, vol. 5, Springer, Berlin, 2020. · Zbl 1507.20001
[33] L.Escobar, Brick manifolds and toric varieties of brick polytopes, Electron. J. Combin.23 (2016), no. 2, Paper 2.25, 18 pp. · Zbl 1368.14064
[34] P.Galashin and T.Lam, Positroids, knots, and \(q, t\)-Catalan numbers, arXiv: 2012.09745. · Zbl 1503.14044
[35] P.Galashin and T.Lam, Positroid Catalan numbers, arXiv: 2104.05701.
[36] P.Galashin and T.Lam, Positroid varieties and cluster algebras, Ann. Sci. Éc. Norm. Supér, to appear, arXiv:1906.03501.
[37] P.Galashin and T.Lam, Plabic links, quivers, and skein relations, arXiv: 2208.01175.
[38] P.Galashin, T.Lam, M.Sherman‐Bennett, and D.Speyer, Braid variety cluster structures I: 3D plabic graphs, in progress, arXiv:2210.04778.
[39] P.Galashin, T.Lam, M.Sherman‐Bennett, and D.Speyer, Braid variety cluster structures II: general type, in progress.
[40] H.Gao, L.Shen, and D.Weng, Augmentations, fillings, and clusters, arXiv: 2008.10793.
[41] N.Garner and O.Kivinen, Generalized affine Springer theory and Hilbert schemes on planar curves, IMRN2022; rnac038. https://doi.org/10.1093/imrn/rnac038 · Zbl 1523.14005 · doi:10.1093/imrn/rnac038
[42] A.Garsia and M.Haiman, A remarkable \(q,t\)-Catalan sequence and \(q\)‐Lagrange inversion, J. Algebraic Combin.5 (1996), no. 3, 191-244. · Zbl 0853.05008
[43] M.Gekhtman, M.Shapiro, and A.Vainshtein, Cluster algebras and Poisson geometry, Mathematical Surveys and Monographs, vol. 167, American Mathematical Society, Providence, RI, 2010. · Zbl 1217.13001
[44] M.Goresky and R.Kottwitz, and R.Macpherson, Homology of affine Springer fibers in the unramified case, Duke Math. J.121 (2004), no. 3, 509-561. · Zbl 1162.14311
[45] M.Goresky, R.Kottwitz, and R.MacPherson, Purity of equivalued affine Springer fibers, Represent. Theory10 (2006), 130-146. · Zbl 1133.22013
[46] E.Gorsky, \(q,t\)‐Catalan numbers and knot homology, Zeta functions in algebra and geometry, Contemp. Math., vol. 566, Amer. Math. Soc., Providence, RI, 2012, pp. 213-232. · Zbl 1294.57007
[47] E.Gorsky, G.Hawkes, A.Schilling, and J.Rainbolt, Generalized \(q,t\)‐Catalan numbers, Algebr. Comb.3 (2020), no. 4, 855-886. · Zbl 1448.05215
[48] E.Gorsky and M.Hogancamp, Hilbert schemes and \(y\)‐ification of Khovanov-Rozansky homology, Geom. Topol.26 (2022) 587-678. · Zbl 1508.14005
[49] E.Gorsky, M.Hogancamp, and A.Mellit, Tautological classes and symmetry in Khovanov-Rozansky homology, arXiv: 2103.01212.
[50] E.Gorsky, M.Hogancamp, A.Mellit, and K.Nakagane, Serre duality for Khovanov—Rozansky homology, Selecta Math. (N. S.)25 (2019), no. 79, 33 p. · Zbl 1439.57013
[51] E.Gorsky, M.Hogancamp, and P.Wedrich, Derived traces of Soergel categories, IMRN. (2022), no. 15, 11304-11400. · Zbl 1528.18013
[52] E.Gorsky and M.Mazin, Compactified Jacobians and \(q,t\)‐Catalan numbers, I. J. Combin. Theory Ser. A120 (2013), no. 1, 49-63. · Zbl 1252.05009
[53] E.Gorsky and M.Mazin, Compactified Jacobians and \(q,t\)‐Catalan numbers, II, J. Algebraic Combin.39 (2014), no. 1, 153-186. · Zbl 1284.05019
[54] E.Gorsky, M.Mazin, and M.Vazirani, Affine permutations and rational slope parking functions, Trans. Amer. Math. Soc.368 (2016), no. 12, 8403-8445. · Zbl 1346.05299
[55] E.Gorsky, M.Mazin, and M.Vazirani, Recursions for rational \(q,t\)‐Catalan numbers, J. Combin. Theory Ser. A173 (2020), 105237, 28 p. · Zbl 1435.05023
[56] E.Gorsky and A.Neguț, Refined knot invariants and Hilbert schemes, J. Math. Pures Appl. (9)104 (2015), no. 3, 403-435. · Zbl 1349.14012
[57] E.Gorsky, A.Neguț, and J.Rasmussen, Flag Hilbert schemes, colored projectors and Khovanov-Rozansky homology, Adv. Math.378 (2021), Paper No. 107542, 115 p. · Zbl 1459.57018
[58] E.Gorsky, A.Oblomkov, J.Rasmussen, and V.Shende, Torus knots and the rational DAHA, Duke Math. J.163 (2014), no. 14, 2709-2794. · Zbl 1318.57010
[59] E.Gorsky, J.Simental, and M.Vazirani, From representations of the Rational Cherednik algebra to Parabolic Hilbert schemes via the Dunkl‐Opdam subalgebra, Transf. Groups (2022). https://doi.org/10.1007/s00031-022-09743-7 · Zbl 07903031 · doi:10.1007/s00031-022-09743-7
[60] E.Gorsky and P.Wedrich, Evaluations of annular Khovanov-Rozansky homology, arXiv: 1904.04481. · Zbl 1522.57031
[61] J.Haglund, The \(q,t\)-Catalan numbers and the space of diagonal harmonics, University Lecture Series, vol. 41, American Mathematical Society, Providence, RI, 2008. (With an appendix on the combinatorics of Macdonald polynomials.) · Zbl 1142.05074
[62] M.Haiman, \(t,q\)-Catalan numbers and the Hilbert scheme, Discrete Math.193 (1998), no. 1-3, 201-224. (Selected papers in honor of Adriano Garsia (Taormina, 1994).) · Zbl 1061.05509
[63] M.Haiman, Hilbert schemes, polygraphs and the Macdonald positivity conjecture, J. Amer. Math. Soc.14 (2001), no. 4, 941-1006. · Zbl 1009.14001
[64] M.Haiman, Vanishing theorems and character formulas for the Hilbert scheme of points in the plane, Invent. Math.149 (2002), no. 2, 371-407. · Zbl 1053.14005
[65] T.Hausel, M.Mereb, and M.Wong, Arithmetic and representation theory of wild character varieties, J. Eur. Math. Soc. (JEMS)21 (2019), no. 10, 2995-3052. · Zbl 1440.14234
[66] N.Hemelsoet, O.Kivinen, and A.Lachowska, On the affine Springer fibers inside the invariant center of the small quantum group, arXiv: 2205.09700.
[67] T.Hikita, Affine Springer fibers of type A and combinatorics of diagonal coinvariants, Adv. Math.263 (2014), 88-122. · Zbl 1302.14041
[68] J.Hilburn, J.Kamnitzer, and A.Weekes, BFN Springer theory, arXiv: 2004.14998. · Zbl 1519.17006
[69] M.Hogancamp, Categorified Young symmetrizers and stable homology of torus links, Geom. Topol.22 (2018), no. 5, 2943-3002. · Zbl 1423.57028
[70] M.Hogancamp, Khovanov-Rozansky homology and higher Catalan sequences, arXiv: 1704.01562.
[71] M.Hogancamp and A.Mellit, Torus link homology, arXiv: 1909.00418.
[72] L.Jeffrey, Group cohomology construction of the cohomology of moduli spaces of flat connections on 2‐manifolds, Duke Math. J.77 (1995), no. 2, 407-429. · Zbl 0870.57013
[73] T.Kálmán, Braid‐positive Legendrian links, Int. Math. Res. Not.2006, Art ID 14874, 29 pp. · Zbl 1128.57006
[74] M.Khovanov, A categorification of the Jones polynomial, Duke Math. J.101 (2000), no. 3, 359-426. · Zbl 0960.57005
[75] M.Khovanov, Triply‐graded link homology and Hochschild homology of Soergel bimodules, Internat. J. Math.18 (2007), no. 8, 869-885. · Zbl 1124.57003
[76] M.Khovanov and L.Rozansky, Matrix factorizations and link homology, Fund. Math.199 (2008), no. 1, 1-91. · Zbl 1145.57009
[77] M.Khovanov and L.Rozansky, Matrix factorizations and link homology. II, Geom. Topol.12 (2008), no. 3, 1387-1425. · Zbl 1146.57018
[78] O.Kivinen, Hecke correspondences for Hilbert schemes of reducible locally planar curves, Algebr. Geom.6 (2019), no. 5, 530-547. · Zbl 1430.14010
[79] O.Kivinen, Unramified affine Springer fibers and isospectral Hilbert schemes, Selecta Math. (N.S.)26 (2020), no. 4, Paper No. 61, 42 p. · Zbl 1485.20132
[80] A.Knutson, T.Lam, and D.Speyer, Positroid varieties: juggling and geometry, Compos. Math.149 (2013), no. 10, 1710-1752. · Zbl 1330.14086
[81] A.Knutson and E.Miller, Subword complexes in Coxeter groups, Adv. Math.184 (2004), no. 1, 161-176. · Zbl 1069.20026
[82] R.Kodera and H.Nakajima, Quantized Coulomb branches of Jordan quiver gauge theories and cyclotomic rational Cherednik algebras, String‐Math, 2016, Proc. Sympos. Pure Math., vol. 98, Amer. Math. Soc., Providence, RI, 2018, pp. 49-78. · Zbl 1469.20006
[83] T.Lam and D.Speyer, Cohomology of cluster varieties. I, Locally acyclic case, Algebra Number Theory16 (2022), no. 1, 179-230. · Zbl 1498.13062
[84] G.Lusztig and J.Smelt, Fixed point varieties on the space of lattices, Bull. Lond. Math. Soc.23 (1991), no. 3, 213-218. · Zbl 0779.14004
[85] A. A.Markov, Über die freie Äquivalenz der geschlossenen Zöpfe, Recueil Math. Moscou1 (1935), 73-78. · Zbl 0014.04202
[86] D.Maulik, Stable pairs and the HOMFLY polynomial, Invent. Math.204 (2016), no. 3, 787-831. · Zbl 1353.32032
[87] D.Maulik and Z.Yun, Macdonald formula for curves with planar singularities, J. Reine Angew. Math.694 (2014), 27-48. · Zbl 1304.14036
[88] A.Mellit, Toric braids and \((m,n)\)-parking functions, Duke Math. J.170 (2021), no. 18, 4123-4169. · Zbl 1481.05011
[89] A.Mellit, Homology of torus knots, Geom. Topol.26 (2022), no. 1, 47-70. · Zbl 1523.57014
[90] A.Mellit, Cell decompositions of character varieties, arXiv: 1905.10685.
[91] L.Migliorini, Homfly polynomials from the Hilbert schemes of a planar curve [after D. Maulik, A. Oblomkov, V. Shende, …], Astérisque422, Séminaire Bourbaki. vol. 2018/2019, Exposés 1151-1165 (2020), 355-389. · Zbl 1466.14003
[92] L.Migliorini and V.Shende, A support theorem for Hilbert schemes of planar curves, J. Eur. Math. Soc. (JEMS)15 (2013), no. 6, 2353-2367. · Zbl 1303.14019
[93] J.Milnor, Singular points of complex hypersurfaces, Annals of Mathematics Studies, vol. 61, Princeton University Press, Princeton, NJ; University of Tokyo Press, Tokyo, 1968. · Zbl 0184.48405
[94] H.Nakajima, Lectures on Hilbert schemes of points on surfaces, University Lecture Series, vol. 18, American Mathematical Society, Providence, RI, 1999. · Zbl 0949.14001
[95] S.Nawata and A.Oblomkov, Lectures on knot homology, Physics and mathematics of link homology, Contemp. Math., vol. 680, Centre Rech. Math. Proc., Amer. Math. Soc., Providence, RI, 2016, pp. 137-177.
[96] A.Oblomkov, Notes on matrix factorizations and knot homology, Geometric representation theory and gauge theory, Lecture Notes in Math., vol. 2248, Fond. CIME/CIME Found. Subser., Springer, Cham, 2019, pp. 83-127. arXiv: 1901.04052. · Zbl 1439.57030
[97] A.Oblomkov, J.Rasmussen, and V.Shende, The Hilbert scheme of a plane curve singularity and the HOMFLY homology of its link, Geom. Topol.22 (2018), no. 2, 645-691. (With an appendix by Eugene Gorsky.) · Zbl 1388.14087
[98] A.Oblomkov and L.Rozansky, Knot homology and sheaves on the Hilbert scheme of points on the plane, Selecta Math. (N.S.)24 (2018), no. 3, 2351-2454. · Zbl 1404.57018
[99] A.Oblomkov and L.Rozansky, Affine braid group, JM elements and knot homology, Transform. Groups24 (2019), no. 2, 531-544. · Zbl 1439.57031
[100] A.Oblomkov and L.Rozansky, HOMFLYPT homology of Coxeter links, arXiv: 1706.00124. · Zbl 1540.57045
[101] A.Oblomkov and L.Rozansky, A categorification of a cyclotomic Hecke algebra, arXiv: 1801.06201.
[102] A.Oblomkov and L.Rozansky, Categorical Chern character and braid groups, arXiv: 1811.03257. · Zbl 1439.57031
[103] A.Oblomkov and L.Rozansky, 3D TQFT and HOMFLYPT homology, arXiv: 1812.06340. · Zbl 1540.57045
[104] A.Oblomkov and L.Rozansky, Dualizable link homology, arXiv: 1905.06511. · Zbl 1540.57045
[105] A.Oblomkov and L.Rozansky, Soergel bimodules and matrix factorizations, arXiv: 2010.14546. · Zbl 1540.57045
[106] A.Oblomkov and Z.Yun, Geometric representations of graded and rational Cherednik algebras, Adv. Math.292 (2016), 601-706. · Zbl 1403.20007
[107] A.Oblomkov and Z.Yun, The cohomology ring of certain compactified Jacobians, arXiv: 1710.05391.
[108] Online seminar on homology of torus (and other) knots. https://www.math.ucdavis.edu/ egorskiy/TorusKnots/.
[109] J.Piontkowski, Topology of the compactified Jacobians of singular curves, Math. Z.255 (2007), no. 1, 195-226. · Zbl 1135.14020
[110] H.Queffelec and D. E. V.Rose, The \(\mathfrak{sl}_n\) foam 2‐category: a combinatorial formulation of Khovanov-Rozansky homology via categorical skew Howe duality, Adv. Math.302 (2016), 1251-1339. · Zbl 1360.57025
[111] J.Rasmussen, Some differentials on Khovanov-Rozansky homology, Geom. Topol.19 (2015), no. 6, 3031-3104. · Zbl 1419.57027
[112] J.Rasmussen, Knots, Polynomials, and categorification, PCMI lecture notes, https://www.dpmms.cam.ac.uk/ jar60/PCMINotes.pdf
[113] J.Rennemo, Homology of Hilbert schemes of points on a locally planar curve, J. Eur. Math. Soc. (JEMS)20 (2018), no. 7, 1629-1654. · Zbl 1409.14011
[114] L.Rider, Formality for the nilpotent cone and a derived Springer correspondence, Adv. Math.235 (2013), 208-236. · Zbl 1278.17004
[115] L.Rider and A.Russell, Perverse sheaves on the nilpotent cone and Lusztig’s generalized Springer correspondence, Lie algebras, Lie superalgebras, vertex algebras and related topics, Proc. Sympos. Pure Math., vol. 92, Amer. Math. Soc., Providence, RI, 2016, pp. 273-292. · Zbl 1427.17009
[116] L.‐H.Robert and E.Wagner, A closed formula for the evaluation of foams, Quantum Topol.11 (2020), no. 3, 411-487. · Zbl 1476.57054
[117] R.Rouquier, Categorification of the braid groups, arXiv: math/0409593. · Zbl 1162.20301
[118] K.Serhiyenko, M.Sherman‐Bennett, and L.Williams, Cluster structures on Schubert varieties in the Grassmannian, Proc. Lond. Math. Soc. (6)119 (2019) 1694-1744. · Zbl 1439.05227
[119] L.Shen and D.Weng, Cluster structures on double Bott-Samelson cells, Forum Math. Sigma9 (2021), Paper No. e66, 89 p. · Zbl 1479.13028
[120] V.Shende, D.Treumann, and E.Zaslow, Legendrian knots and constructible sheaves, Invent. Math.207 (2017), no. 3, 1031-1133. · Zbl 1369.57016
[121] W.Soergel, Kategorie \(\mathcal{O} \), perverse Garben und Moduln über den Koinvarianten zur Weylgruppe, J. Amer. Math. Soc.3 (1990), no. 2, 421-445. · Zbl 0747.17008
[122] M.‐T.Trinh, From the Hecke Category to the Unipotent Locus, arXiv: 2106.07444.
[123] B.Webster and G.Williamson, A geometric model for Hochschild homology of Soergel bimodules, Geom. Top.12 (2008), 1243-1263. · Zbl 1198.20037
[124] B.Webster and G.Williamson, The geometry of markov traces, Duke Math. J.160 (2011), no. 2, 401-419. · Zbl 1254.20009
[125] H.Wu, Braids, transversal links and the Khovanov-Rozansky theory, Trans. Amer. Math. Soc.360 (2008), no. 7, 3365-3389. · Zbl 1152.57008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.