×

3D TQFT and HOMFLYPT homology. (English) Zbl 1540.57045

Summary: We describe a family of 3d topological B-models whose target spaces are Hilbert schemes of points in \(\mathbb{C}^2\). The interfaces separating theories with different numbers of points correspond to braid strands. The Hilbert space of the picture of a closed braid is the HOMFLY-PT homology of the corresponding link.

MSC:

57R56 Topological quantum field theories (aspects of differential topology)
57K10 Knot theory

References:

[1] Arkhipov, S.; Kanstrup, T., Equivariant matrix factorizations and Hamiltonian reduction, Bull. Korean Math. Soc., 54, 5, 1803-1825 (2015) · Zbl 1400.14047
[2] Anno, R., Nandakumar, V.: Exotic t-structures for two-block Springer fibers (2016). arXiv:1602.00768v1 · Zbl 1524.14037
[3] Asaeda, M.; Przytycki, J.; Sikora, A., Categorification of the Kauffman bracket skein module of I-bundles over surfaces, Algebra Geom. Topol., 4, 2, 1177-1210 (2004) · Zbl 1070.57008 · doi:10.2140/agt.2004.4.1177
[4] Arnold, V., Mathematical Methods of Classical Mechanics (1989), New York: Springer, New York · Zbl 0692.70003 · doi:10.1007/978-1-4757-2063-1
[5] Baez, J.; Neuchl, M., Higher dimensional algebra, Adv. Math., 121, 2, 196-244 (1996) · Zbl 0855.18008 · doi:10.1006/aima.1996.0052
[6] Caldararu, A., Willerton, S.: The Mukai pairing, I: a categorical approach (2007). arXiv:0707.2052v1 · Zbl 1214.14013
[7] Dimofte, T., Garner, N., Hilburn, J., Oblomkov, A., Rozansky, L.: (in preparation) (2023)
[8] Dunfield, N.; Gukov, S.; Rasmussen, J., The superpolynomial for knot homologies, Exp. Math., 15, 2, 129-159 (2006) · Zbl 1118.57012 · doi:10.1080/10586458.2006.10128956
[9] Etingof, P., Gelaki, S., Nikshych, D., Ostrik, V.: Tensor categories. Mathematical Surveys and Monographs (2015) · Zbl 1365.18001
[10] Garner, R.; Gurksi, N., The low-dimensional structures formed by tricategories, Math. Proc. Camb. Philos. Soc., 146, 3, 551 (2009) · Zbl 1169.18001 · doi:10.1017/S0305004108002132
[11] Gaitsgory, D., Rozenblyum, N.: A study in derived algebraic geometry. Mathematical Surveys and Monographs (2017) · Zbl 1409.14003
[12] Gaiotto, D.; Witten, E., Supersymmetric boundary conditions in \(\cal{N} =4\) super yang-mills theory, J. Stat. Phys., 135, 5-6, 789-855 (2009) · Zbl 1178.81180 · doi:10.1007/s10955-009-9687-3
[13] Nakajima, H., Instantons on ALE spaces, quiver varieties, and Kac-Moody algebras, Duke Math. J., 76, 2, 365-416 (1994) · Zbl 0826.17026 · doi:10.1215/S0012-7094-94-07613-8
[14] Hiraku, N.: Introduction to quiver varieties-for ring and representation theorists. In: Proceedings of the 49th Symposium on Ring Theory and Representation Theory (2017) · Zbl 1437.17007
[15] Hanany, A.; Witten, E., Type IIB superstrings, BPS monopoles, and three-dimensional gauge dynamics, Nucl. Phys. B, 492, 1-2, 152-190 (1997) · Zbl 0996.58509 · doi:10.1016/S0550-3213(97)80030-2
[16] Hanany, Amihay; Witten, Edward, Type IIB superstrings, BPS monopoles, and three-dimensional gauge dynamics, Nucl. Phys. B, 492, 1-2, 152-190 (1997) · Zbl 0996.58509 · doi:10.1016/S0550-3213(97)80030-2
[17] Jones, VFR, Hecke algebra representations of braid groups and link polynomials, Ann. Math., 126, 2, 335-392 (1987) · Zbl 0631.57005 · doi:10.2307/1971403
[18] Khovanov, M., Triply-graded link homology and Hochschild homology of Soergel bimodules, Int. J. Math., 18, 8, 869-885 (2007) · Zbl 1124.57003 · doi:10.1142/S0129167X07004400
[19] Knorrer, H., Cohen-Macaulay modules on hypersurface singularities. I, Invent. Math., 1, 153-164 (1987) · Zbl 0617.14033 · doi:10.1007/BF01405095
[20] Khovanov, M.; Rozansky, L., Matrix factorizations and link homology. II, Geom. Topol., 12, 1387-1425 (2008) · Zbl 1146.57018 · doi:10.2140/gt.2008.12.1387
[21] Kapustin, A.; Rozansky, L., Three-dimensional topological field theory and symplectic algebraic geometry II, Commun. Number Theory Phys., 4, 3, 463-549 (2010) · Zbl 1220.81169 · doi:10.4310/CNTP.2010.v4.n3.a1
[22] Kapustin, A.; Rozansky, L.; Saulina, N., Three-dimensional topological field theory and symplectic algebraic geometry I, Nucl. Phys. B, 816, 3, 295-355 (2009) · Zbl 1194.81224 · doi:10.1016/j.nuclphysb.2009.01.027
[23] Kapranov, M.M., Voevodsky, V.A.: 2-categories and Zamolodchikov tetrahedra equations. In: Algebraic Groups and Their Generalizations: Quantum and Infinite-Dimensional Methods, pp. 177-259 (1994) · Zbl 0809.18006
[24] Kapustin, A.; Witten, E., Electric-magnetic duality and the geometric Langlands program, Commun. Number Theory Phys., 1, 1, 1-236 (2007) · Zbl 1128.22013 · doi:10.4310/CNTP.2007.v1.n1.a1
[25] Lurie, J., On the classification of topological field theories, Curr. Dev. Math., 2008, 1, 129-280 (2008) · Zbl 1180.81122 · doi:10.4310/CDM.2008.v2008.n1.a3
[26] Maffei, A., Quiver varieties of type A, Comment. Math. Helv., 80, 1-27 (2005) · Zbl 1095.16008 · doi:10.4171/CMH/1
[27] Murakami, H.; Ohtsuki, T.; Yamada, Sh, HOMFLY polynomial via an invariant of colored plane graphs, Enseign. Math., 44, 2, 325-360 (1998) · Zbl 0958.57014
[28] Mirković, Ivan; Vybornov, Maxim, On quiver varieties and affine Grassmannians of type A, Comptes Rendus Math., 336, 3, 207-212 (2003) · Zbl 1068.14056 · doi:10.1016/S1631-073X(03)00022-0
[29] Mirković, Ivan; Vybornov, Maxim; Krylov, Vasily, Comparison of quiver varieties, loop Grassmannians and nilpotent cones in type A, Adv. Math., 407 (2022) · Zbl 1497.14096 · doi:10.1016/j.aim.2022.108397
[30] Nakajima, H.: Lectures on Hilbert Schemes of Points on Surfaces. University Lecture Series (1999) · Zbl 0949.14001
[31] Nakajima, H.: Geometric Satake correspondence for affine Kac-Moody Lie algebras of type A (2018). arXiv:1812.11710v1
[32] Nakajima, H.; Takayama, Y., Cherkis bow varieties and coulomb branches of quiver gauge theories of affine type A, Sel. Math. New Ser., 23, 4, 2553-2633 (2017) · Zbl 1431.16014 · doi:10.1007/s00029-017-0341-7
[33] Oblomkov, A., Rozansky, L.: HOMFLYPT homology of Coxeter links (2017). arXiv:1706.00124v1
[34] Oblomkov, A., Rozansky, L.: 3D TQFT and HOMFLYPT homology (2018) arXiv:1812.06340 · Zbl 1404.57018
[35] Oblomkov, A., Rozansky, L.: A categorification of a cyclotomic Hecke algebra (2018). arXiv:1801.06201v1
[36] Oblomkov, A., Rozansky, L.: Affine braid group, JM elements and knot homology. Transformation Groups (2018)
[37] Oblomkov, A., Rozansky, L.: Categorical Chern character and braid groups (2018). arXiv:1811.03257v1
[38] Oblomkov, A.; Rozansky, L., Knot homology and sheaves on the Hilbert scheme of points on the plane, Sel. Math. New Ser., 24, 3, 2351-2454 (2018) · Zbl 1404.57018 · doi:10.1007/s00029-017-0385-8
[39] Oblomkov, A., Rozasky, L.: Categorical Chern character and Hall algebras (in preparation) (2019)
[40] Oblomkov, A., Rozansky, L.: Soergel bimodules and matrix factorizations (2020). arXiv:2010.14546v1
[41] Oblomkov, A., Rozansky, L.: Matrix factorizations and annular homology (in preparation) (2022)
[42] Rimanyi, R., Rozansky, L.: New quiver-like varieties and Lie superalgebras (2021). arXiv:2105.11499v1 · Zbl 1522.81126
[43] Soergel, W.: Langlands’ philosophy and Koszul duality. In: Algebra-Representation Theory (Constanta, 2000), pp. 379-414 (2001) · Zbl 1001.22010
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.