×

The first thirty years of Andersén-Lempert theory. (English) Zbl 1524.32023

Summary: In this paper we expose the impact of the fundamental discovery, made by E. Andersén and L. Lempert [Invent. Math. 110, No. 2, 371–388 (1992; Zbl 0770.32015)], that the group generated by shears is dense in the group of holomorphic automorphisms of a complex Euclidean space of dimension \(n > 1\). In three decades since its publication, their groundbreaking work led to the discovery of several new phenomena and to major new results in complex analysis and geometry involving Stein manifolds and affine algebraic manifolds with many automorphisms. The aim of this survey is to present the focal points of these developments, with a view towards the future.

MSC:

32M17 Automorphism groups of \(\mathbb{C}^n\) and affine manifolds
32Q56 Oka principle and Oka manifolds
14R10 Affine spaces (automorphisms, embeddings, exotic structures, cancellation problem)
53D35 Global theory of symplectic and contact manifolds

Citations:

Zbl 0770.32015

References:

[1] A. Abbondandolo, L. Arosio, J. E. Fornæss, P. Majer, H. Peters, J. Raissy and L. Vivas, A survey on non-autonomous basins in several complex variables, arXiv: 1311.3835 (2014).
[2] Abhyankar, S. S.; Moh, T. T., Embeddings of the line in the plane, J. Reine Angew. Math., 276, 148-166 (1975) · Zbl 0332.14004
[3] Acquistapace, F.; Broglia, F.; Tognoli, A., A relative embedding theorem for Stein spaces, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 2, 507-522 (1975) · Zbl 0313.32020
[4] A. Alarcón, Complete complex hypersurfaces in the ball come in foliations, J. Differential Geom., in press, arXiv: 1802.02004. · Zbl 1503.32009
[5] Alarcón, A.; Forstnerič, F., Every bordered Riemann surface is a complete proper curve in a ball, Math. Ann., 357, 1049-1070 (2013) · Zbl 1288.32014 · doi:10.1007/s00208-013-0931-4
[6] Alarcón, A.; Forstnerič, F., Complete densely embedded complex lines in ℂ^2, Proc. Amer. Math. Soc., 146, 1059-1067 (2018) · Zbl 1386.32016 · doi:10.1090/proc/13873
[7] Alarcon, A.; Forstnerič, F., A foliation of the ball by complete holomorphic discs, Math. Z., 296, 169-174 (2020) · Zbl 1447.32037 · doi:10.1007/s00209-019-02430-6
[8] Alarcón, A.; Forstnerič, F.; López, F. J., Minimal Surfaces from a Complex Analytic Viewpoint (2021), Cham: Springer, Cham · Zbl 1520.53001 · doi:10.1007/978-3-030-69056-4
[9] Alarcón, A.; Globevnik, J., Complete embedded complex curves in the ball of ℂ^2 can have any topology, Anal. PDE, 10, 1987-1999 (2017) · Zbl 1384.32014 · doi:10.2140/apde.2017.10.1987
[10] Alarcóon, A.; Globevnikand, J.; Lóopez, F. J., A construction of complete complex hypersurfaces in the ball with control on the topology, J. Reine Angew. Math., 751, 289-308 (2019) · Zbl 1423.32018 · doi:10.1515/crelle-2016-0061
[11] Alarcoón, A.; Lóopez, F. J., Complete bounded embedded complex curves in ℂ^2, J. Eur. Math.Soc.(JEMS), 18, 1675-1705 (2016) · Zbl 1350.32016 · doi:10.4171/JEMS/625
[12] Andersén, E., Volume-preserving automorphisms of ℂ^n, Complex Variables Theory Appl., 14, 223-235 (1990) · Zbl 0705.58008 · doi:10.1080/17476939008814422
[13] Andersén, E., Complete vector fields on (ℂ*)^n, Proc. Amer. Math. Soc., 128, 1079-1085 (2000) · Zbl 0958.32018 · doi:10.1090/S0002-9939-99-05123-0
[14] E. Andersen and L. Lempert, On the group of holomorphic automorphisms of ℂ^n, Invent. Math., 110 (1992), 371-388. · Zbl 0770.32015
[15] Andrist, R. B., Stein spaces characterized by their endomorphisms, Trans. Amer. Math. Soc., 363, 2341-2355 (2011) · Zbl 1222.32023 · doi:10.1090/S0002-9947-2010-05104-9
[16] Andrist, R. B., The density property for Gizatullin surfaces with reduced degenerate fibre, J. Geom. Anal., 28, 2522-2538 (2018) · Zbl 1417.32025 · doi:10.1007/s12220-017-9916-y
[17] Andrist, R. B., The density property for Calogero-Moser spaces, Proc. Amer. Math. Soc., 149, 4207-4218 (2021) · Zbl 1483.32013 · doi:10.1090/proc/15457
[18] Andrist, R. B.; Forstneric, F.; Ritter, T.; Wold, E. F., Proper holomorphic embeddings into Stein manifolds with the density property, J. Anal. Math., 130, 135-150 (2016) · Zbl 1373.32015 · doi:10.1007/s11854-016-0031-y
[19] Andrist, R. B.; Kraft, H., Varieties characterized by their endomorphisms, Math. Res. Lett., 21, 225-233 (2014) · Zbl 1304.14078 · doi:10.4310/MRL.2014.v21.n2.a1
[20] Andrist, R. B.; Kutzschebauch, F., The fibred density property and the automorphism group of the spectral ball, Math. Ann., 370, 917-936 (2018) · Zbl 1391.32031 · doi:10.1007/s00208-017-1520-8
[21] Andrist, R. B.; Kutzschebauch, F.; Poloni, P-M, The density property for Gizatullin surfaces completed by four rational curves, Proc. Amer. Math. Soc., 145, 5097-5108 (2017) · Zbl 1408.14198 · doi:10.1090/proc/13665
[22] Andrist, R. B.; Ugolini, R., A new notion of tameness, J. Math. Anal. Appl., 472, 196-215 (2019) · Zbl 1420.32016 · doi:10.1016/j.jmaa.2018.11.018
[23] Andrist, R. B.; Wold, E. F., Riemann surfaces in Stein manifolds with the density property, Ann. Inst. Fourier (Grenoble), 64, 681-697 (2014) · Zbl 1310.32018 · doi:10.5802/aif.2862
[24] Arosio, L.; Lárusson, F., Chaotic holomorphic automorphisms of Stein manifolds with the volume density property, J. Geom. Anal., 29, 1744-1762 (2019) · Zbl 1435.32025 · doi:10.1007/s12220-018-0060-0
[25] Arosio, L.; Lárusson, F., Generic aspects of holomorphic dynamics on highly flexible complex manifolds, Ann. Mat. Pura Appl. (4), 199, 1697-1711 (2020) · Zbl 1442.32028 · doi:10.1007/s10231-019-00938-6
[26] Arzhantsev, I.; Flenner, H.; Kaliman, S.; Kutzschebauch, F.; Zaidenberg, M., Infinite transitivity on affine varieties, Birational Geometry, Rational Curves, and Arithmetic, 1-13 (2013), New York: Springer, New York · Zbl 1295.14057
[27] Arzhantsev, I.; Flenner, H.; Kaliman, S.; Kutzschebauch, F.; Zaidenberg, M., Flexible varieties and automorphism groups, Duke Math. J., 162, 767-823 (2013) · Zbl 1295.14057 · doi:10.1215/00127094-2080132
[28] Baader, S.; Kutzschebauch, F.; Wold, E. F., Knotted holomorphic discs in ℂ^2, J. Reine Angew. Math., 648, 69-73 (2010) · Zbl 1248.32007
[29] Bedford, E.; Smillie, J., Fatou-Bieberbach domains arising from polynomial automorphisms, Indiana Univ. Math. J., 40, 789-792 (1991) · Zbl 0739.32027 · doi:10.1512/iumj.1991.40.40035
[30] Bedford, E.; Smillie, J., Polynomial diffeomorphisms of ℂ^2. II. Stable manifolds and recurrence, J. Amer. Math. Soc., 4, 657-679 (1991) · Zbl 0744.58068
[31] Behnke, H.; Stein, K., Konvergente Folgen von Regularitätsbereichen und die Meromorphiekonvexität, Math. Ann., 116, 204-216 (1939) · JFM 64.0322.03 · doi:10.1007/BF01597355
[32] Behnke, H.; Thullen, P., Zur Theorie der Funktionen Mehrerer Komplexer Veränderlichen, Math. Ann., 109, 313-323 (1934) · Zbl 0008.31903 · doi:10.1007/BF01449141
[33] Bell, S. R.; Narasimhan, R., Proper holomorphic mappings of complex spaces, Several Complex Variables, 1-38 (1990), Berlin: Springer, Berlin · Zbl 0733.32021
[34] Bieberbach, L., Beispiel zweier ganzer Funktionen zweier komplexer Variablen, welche eine schlichte volumtreue Abbildung des ℝ_4 auf einen Teil seiner selbst vermitteln, Sitzungsber. Preuß. Akad. Wiss., Phys.-Math. Kl., 1933, 476-479 (1933) · JFM 59.0344.02
[35] Bishop, E., Mappings of partially analytic spaces, Amer. J. Math., 83, 209-242 (1961) · Zbl 0118.07701 · doi:10.2307/2372953
[36] L. Boc Thaler, Fatou Components, Ph.D. dissertation, University of Ljubljana (2016), http://www.matknjiz.si/doktorati/2016/Boc-Thaler-14521-20.pdf.
[37] Boc Thaler, L.; Forstnerič, F., A long ℂ^2 without holomorphic functions, Anal. PDE, 9, 2031-2050 (2016) · Zbl 1368.32008 · doi:10.2140/apde.2016.9.2031
[38] Bochner, S.; Martin, W. T., Several Complex Variables (1948), Princeton, N.J.: Princeton University Press, Princeton, N.J. · Zbl 0041.05205
[39] Borell, S.; Kutzschebauch, F., Non-equivalent embeddings into complex Euclidean spaces, Internat. J. Math., 17, 1033-1046 (2006) · Zbl 1122.32009 · doi:10.1142/S0129167X06003795
[40] Bracci, F.; Raissy, J.; Stensønes, B., Automorphisms of ℂ^k with an invariant nonrecurrent attracting Fatou component biholomorphic to ℂ × (ℂ*)^k−1, J. Eur. Math. Soc. (JEMS), 23, 639-666 (2021) · Zbl 1469.37036 · doi:10.4171/JEMS/1019
[41] Brotbek, D., On the hyperbolicity of general hypersurfaces, Publ. Math. Inst. Hautes Études Sci., 126, 1-34 (2017) · Zbl 1458.32022 · doi:10.1007/s10240-017-0090-3
[42] Buzzard, G. T.; Fornæss, J. E., Complete holomorphic vector fields and time-1 maps, Indiana Univ. Math. J., 44, 1175-1182 (1995) · Zbl 0847.32038
[43] Buzzard, G. T.; Fornæss, J. E., An embedding of ℂ in ℂ^2 with hyperbolic complement, Math. Ann., 306, 539-546 (1996) · Zbl 0864.32013 · doi:10.1007/BF01445264
[44] Buzzard, G. T.; Forstnerič, F., A Carleman type theorem for proper holomorphic embeddings, Ark. Mat., 35, 157-169 (1997) · Zbl 0886.32014 · doi:10.1007/BF02559596
[45] Buzzard, G. T.; Forstnerič, F., An interpolation theorem for holomorphic automorphisms of ℂ^n, J. Geom. Anal., 10, 101-108 (2000) · Zbl 0963.32014 · doi:10.1007/BF02921807
[46] Buzzard, G. T.; Hubbard, J. H., A Fatou-Bieberbach domain avoiding a neighborhood of a variety of codimension 2, Math. Ann., 316, 699-702 (2000) · Zbl 0954.32011 · doi:10.1007/s002080050350
[47] S. Cantat, A. Regeta and J. Xie, Families of commuting automorphisms, and a characterization of the affine space. arXiv:1912.01567 (2019).
[48] Cerne, M.; Forstnerič, F., Embedding some bordered Riemann surfaces in the affine plane, Math. Res. Lett., 9, 683-696 (2002) · Zbl 1030.32013 · doi:10.4310/MRL.2002.v9.n5.a10
[49] Cerne, M.; Globevnik, J., On holomorphic embedding of planar domains into ℂ^2, J. Anal. Math., 81, 269-282 (2000) · Zbl 0998.32009 · doi:10.1007/BF02788992
[50] Charpentier, S.; Kosiński, L., Construction of labyrinths in pseudoconvex domains, Math. Z., 296, 1021-1025 (2020) · Zbl 1453.32019 · doi:10.1007/s00209-020-02468-x
[51] Chern, S. S.; Moser, J. K., Real hypersurfaces in complex manifolds, Acta Math., 133, 219-271 (1974) · Zbl 0302.32015 · doi:10.1007/BF02392146
[52] G. De Vito, New examples of Stein manifolds with volume density property, Complex Anal. Synerg., 6 (2020), Paper No. 9, 10 pp. · Zbl 07346310
[53] Derksen, H.; Kutzschebauch, F., Nonlinearizable holomorphic group actions, Math. Ann., 311, 41-53 (1998) · Zbl 0911.32042 · doi:10.1007/s002080050175
[54] Dixon, P. G.; Esterle, J., Michael’s problem and the Poincare-Fatou-Bieberbach phenomenon, Bull. Amer. Math. Soc. (N.S.), 15, 127-187 (1986) · Zbl 0608.32008 · doi:10.1090/S0273-0979-1986-15463-7
[55] Docquier, F.; Grauert, H., Levisches Problem und Rungescher Satz für Teilgebiete Steinscher Mannigfaltigkeiten, Math. Ann., 140, 94-123 (1960) · Zbl 0095.28004 · doi:10.1007/BF01360084
[56] Donzelli, F., Algebraic density property of Danilov-Gizatullin surfaces, Math. Z., 272, 1187-1194 (2012) · Zbl 1260.32006 · doi:10.1007/s00209-012-0982-3
[57] Drinovec Drnovsek, B., Complete proper holomorphic embeddings of strictly pseudo-convex domains into balls, J. Math. Anal. Appl., 431, 705-713 (2015) · Zbl 1326.32048 · doi:10.1016/j.jmaa.2015.06.008
[58] Drinovec Drnovsek, B.; Forstnerič, F., Strongly pseudoconvex domains as subvarieties of complex manifolds, Amer. J. Math., 132, 331-360 (2010) · Zbl 1216.32009 · doi:10.1353/ajm.0.0106
[59] Dubouloz, A.; Moser-Jauslin, L.; Poloni, P-M, Inequivalent embeddings of the Koras-Russell cubic 3-fold, Michigan Math. J., 59, 679-694 (2010) · Zbl 1213.14118 · doi:10.1307/mmj/1291213961
[60] Dubouloz, A.; Moser-Jauslin, L.; Poloni, P-M, Automorphism groups of certain rational hypersurfaces in complex four-space, Automorphisms in Birational and Affine Geometry, 301-312 (2014), Cham: Springer, Cham · Zbl 1327.14209
[61] Eliashberg, Y.; Gromov, M., Embeddings of Stein manifolds of dimension n into the affine space of dimension 3n/2 + 1, Ann. of Math. (2), 136, 123-135 (1992) · Zbl 0758.32012 · doi:10.2307/2946547
[62] Fatou, P., Sur certaines fonctions uniformes de deux variables, C. R. Acad. Sci., Paris, 175, 1030-1033 (1922) · JFM 48.0391.03
[63] Fatou, P., Sur les fonctions móeromorphes de deux variables, C. R. Acad. Sci., Paris, 175, 862-865 (1922) · JFM 48.0391.02
[64] Fieseler, K-H, On complex affine surfaces with ℂ^+-action, Comment. Math. Helv., 69, 5-27 (1994) · Zbl 0806.14033 · doi:10.1007/BF02564471
[65] Fornaess, J. E., An increasing sequence of Stein manifolds whose limit is not Stein, Math. Ann., 223, 275-277 (1976) · Zbl 0334.32017 · doi:10.1007/BF01360958
[66] Fornæss, J. E., Short ℂ^k, Complex Analysis in Several Variables—Memorial Conference of Kiyoshi Oka’s Centennial Birthday, 95-108 (2004), Tokyo: Math. Soc. Japan, Tokyo · Zbl 1071.32007
[67] Fornass, J. E.; Sibony, N., Increasing sequences of complex manifolds, Math. Ann., 255, 351-360 (1981) · Zbl 0438.32012 · doi:10.1007/BF01450708
[68] Fornass, J. E.; Sibony, N., Complex Hóenon mappings in C^2 and Fatou-Bieberbach domains, Duke Math. J., 65, 345-380 (1992) · Zbl 0761.32015
[69] Fornaess, J. E.; Sibony, N., The closing lemma for holomorphic maps, Ergodic Theory Dynam. Systems, 17, 821-837 (1997) · Zbl 0965.37046 · doi:10.1017/S0143385797086227
[70] Fornæss, J. E.; Stensønes, B., Stable manifolds of holomorphic hyperbolic maps, Internat. J. Math., 15, 749-758 (2004) · Zbl 1071.32016 · doi:10.1142/S0129167X04002557
[71] Fornaess, J. E.; Stout, E. L., Spreading polydiscs on complex manifolds, Amer. J. Math., 99, 933-960 (1977) · Zbl 0384.32004 · doi:10.2307/2373992
[72] Forster, O., Plongements des varieátáes de Stein, Comment. Math. Helv., 45, 170-184 (1970) · Zbl 0184.31403 · doi:10.1007/BF02567324
[73] Forstnerič, F., Approximation by automorphisms on smooth submanifolds of ℂ^n, Math. Ann., 300, 719-738 (1994) · Zbl 0821.32028 · doi:10.1007/BF01450512
[74] Forstnerič, F., A theorem in complex symplectic geometry, J. Geom. Anal., 5, 379-393 (1995) · Zbl 0836.58015 · doi:10.1007/BF02921802
[75] Forstnerič, F., Actions of (ℝ, +) and (ℂ, +) on complex manifolds, Math. Z., 223, 123-153 (1996) · Zbl 0872.32021
[76] Forstnerič, F., Interpolation by holomorphic automorphisms and embeddings in ℂ^n, J. Geom. Anal., 9, 93-117 (1999) · Zbl 0963.32006 · doi:10.1007/BF02923090
[77] Forstnerič, F., Noncritical holomorphic functions on Stein manifolds, Acta Math., 191, 143-189 (2003) · Zbl 1064.32021 · doi:10.1007/BF02392963
[78] Forstnerič, F., Stein Manifolds and Holomorphic Mappings (The Homotopy Principle in Complex Analysis) (2011), Heidelberg: Springer, Heidelberg · Zbl 1247.32001 · doi:10.1007/978-3-642-22250-4
[79] Forstnerič, F., Holomorphic families of long ℂ^2’s, Proc.Amer. Math.Soc., 140, 2383-2389 (2012) · Zbl 1278.32012 · doi:10.1090/S0002-9939-2011-11092-X
[80] Forstnerič, F., Stein Manifolds and Holomorphic Mappings (The Homotopy Principle in Complex Analysis) (2017), Cham: Springer, Cham · Zbl 1382.32001 · doi:10.1007/978-3-319-61058-0
[81] Forstnerič, F., Holomorphic embeddings and immersions of Stein manifolds: a survey, Geometric Complex Analysis, 145-169 (2018), Singapore: Springer, Singapore · Zbl 1404.32019 · doi:10.1007/978-981-13-1672-2_11
[82] Forstnerič, F., Proper holomorphic immersions into Stein manifolds with the density property, J. Anal. Math., 139, 585-596 (2019) · Zbl 1436.32060 · doi:10.1007/s11854-019-0068-9
[83] Forstnerič, F.; Globevnik, J.; Rosay, J-P, Nonstraightenable complex lines in ℂ^2, Ark. Mat., 34, 97-101 (1996) · Zbl 0853.58015 · doi:10.1007/BF02559509
[84] Forstneričand, F.; Laárusson, F., Oka properties of groups of holomorphic and algebraic automorphisms of complex affine space, Math. Res. Lett., 21, 1047-1067 (2014) · Zbl 1306.32009 · doi:10.4310/MRL.2014.v21.n5.a7
[85] Forstnerič, F.; Prezelj, J., Oka’s principle for holomorphic fiber bundles with sprays, Math. Ann., 317, 117-154 (2000) · Zbl 0964.32017 · doi:10.1007/s002080050361
[86] Forstnerič, F.; Ritter, T., Oka properties of ball complements, Math. Z., 277, 325-338 (2014) · Zbl 1297.32010 · doi:10.1007/s00209-013-1258-2
[87] Forstnerič, F.; Rosay, J-P, Approximation of biholomorphic mappings by automorphisms of ℂ^n, Invent. Math., 112, 323-349 (1993) · Zbl 0792.32011 · doi:10.1007/BF01232438
[88] Forstnerič, F.; Wold, E. F., Bordered Riemann surfaces in ℂ^2, J. Math. Pures Appl. (9), 91, 100-114 (2009) · Zbl 1157.32010 · doi:10.1016/j.matpur.2008.09.010
[89] Forstnerič, F.; Wold, E. F., Embeddings of infinitely connected planar domains into ℂ^2, Anal. PDE, 6, 499-514 (2013) · Zbl 1277.32009 · doi:10.2140/apde.2013.6.499
[90] Forstnerič, F.; Wold, E. F., Fatou-Bieberbach domains in ℂ^n ℝ^k, Ark. Mat., 53, 259-270 (2015) · Zbl 1333.32015 · doi:10.1007/s11512-014-0209-4
[91] Forstnerič, F.; Wold, E. F., Holomorphic families of Fatou-Bieberbach domains and applications to Oka manifolds, Math. Res. Lett., 27, 1697-1706 (2020) · Zbl 1470.32078 · doi:10.4310/MRL.2020.v27.n6.a5
[92] Forstnerič, F.; Wold, E. F., Runge tubes in Stein manifolds with the density property, Proc. Amer. Math.Soc., 148, 569-575 (2020) · Zbl 1436.32041 · doi:10.1090/proc/14309
[93] Fujita, T., On Zariski problem, Proc. Japan Acad. Ser. A Math. Sci., 55, 106-110 (1979) · Zbl 0444.14026 · doi:10.3792/pjaa.55.106
[94] Gizatullin, M. H., Quasihomogeneous affine surfaces, Izv. Akad. Nauk SSSR Ser. Mat., 35, 1047-1071 (1971) · Zbl 0221.14023
[95] Globevnik, J., A bounded domain in ℂ^N which embeds holomorphically into ℂ^N+1, Ark. Mat., 35, 313-325 (1997) · Zbl 0949.32010 · doi:10.1007/BF02559972
[96] Globevnik, J., On Fatou-Bieberbach domains, Math. Z., 229, 91-106 (1998) · Zbl 0919.32001 · doi:10.1007/PL00004653
[97] Globevnik, J., A complete complex hypersurface in the ball of ℂ^N, Ann. of Math. (2), 182, 1067-1091 (2015) · Zbl 1333.32018 · doi:10.4007/annals.2015.182.3.4
[98] Globevnik, J., Holomorphic functions unbounded on curves of finite length, Math. Ann., 364, 1343-1359 (2016) · Zbl 1343.32009 · doi:10.1007/s00208-015-1253-5
[99] Globevnik, J.; Stensønes, B., Holomorphic embeddings of planar domains into ℂ^2, Math. Ann., 303, 579-597 (1995) · Zbl 0847.32030 · doi:10.1007/BF01461006
[100] Grauert, H.; Remmert, R., Theory of Stein spaces (2004), Berlin: Springer-Verlag, Berlin · Zbl 1137.32001 · doi:10.1007/978-3-642-18921-0
[101] Gromov, M., Partial Differential Relations (1986), Berlin: Springer-Verlag, Berlin · Zbl 0651.53001 · doi:10.1007/978-3-662-02267-2
[102] Gromov, M., Oka’s principle for holomorphic sections of elliptic bundles, J. Amer. Math. Soc., 2, 851-897 (1989) · Zbl 0686.32012
[103] He, Z-X; Schramm, O., Fixed points, Koebe uniformization and circle packings, Ann. of Math. (2), 137, 369-406 (1993) · Zbl 0777.30002 · doi:10.2307/2946541
[104] Isaev, A. V.; Kruzhilin, N. G., Effective actions of the unitary group on complex manifolds, Canad. J. Math., 54, 1254-1279 (2002) · Zbl 1026.32053 · doi:10.4153/CJM-2002-048-2
[105] Iss’sa, H., On the meromorphic function field of a Stein variety, Ann. of Math. (2), 83, 34-46 (1966) · Zbl 0146.31401 · doi:10.2307/1970468
[106] Jones, P. W., A complete bounded complex submanifold of ℂ^3, Proc. Amer. Math. Soc., 76, 305-306 (1979) · Zbl 0418.32006
[107] Kaliman, S., Extensions of isomorphisms of subvarieties in flexible varieties, Transform. Groups, 25, 517-575 (2020) · Zbl 1485.14112 · doi:10.1007/s00031-019-09546-3
[108] Kaliman, S.; Koras, M.; Makar-Limanov, L.; Russell, P., ℂ^*-actions on ℂ^3 are linearizable, Electron. Res. Announc. Amer. Math. Soc., 3, 63-71 (1997) · Zbl 0890.14026 · doi:10.1090/S1079-6762-97-00025-5
[109] Kaliman, S.; Kutzschebauch, F., Criteria for the density property of complex manifolds, Invent. Math., 172, 71-87 (2008) · Zbl 1143.32014 · doi:10.1007/s00222-007-0094-6
[110] Kaliman, S.; Kutzschebauch, F., Density property for hypersurfaces \(UV = P(\overline X)\), Math. Z., 258, 115-131 (2008) · Zbl 1133.32012 · doi:10.1007/s00209-007-0162-z
[111] Kaliman, S.; Kutzschebauch, F., Algebraic volume density property of affine algebraic manifolds, Invent. Math., 181, 605-647 (2010) · Zbl 1211.14067 · doi:10.1007/s00222-010-0255-x
[112] Kaliman, S.; Kutzschebauch, F., On the present state of the Andersóen-Lempert theory, Affine Algebraic Geometry, 85-122 (2011), Providence, RI: Amer. Math. Soc., Providence, RI · Zbl 1266.32028 · doi:10.1090/crmp/054/07
[113] Kaliman, S.; Kutzschebauch, F., On the density and the volume density property, Complex Analysis and Geometry, 175-186 (2015), Tokyo: Springer, Tokyo · Zbl 1326.32037 · doi:10.1007/978-4-431-55744-9_12
[114] Kaliman, S.; Kutzschebauch, F., On algebraic volume density property, Transform. Groups, 21, 451-478 (2016) · Zbl 1397.32006 · doi:10.1007/s00031-015-9360-7
[115] Kaliman, S.; Kutzschebauch, F., Algebraic (volume) density property for affine homogeneous spaces, Math. Ann., 367, 1311-1332 (2017) · Zbl 1375.32042 · doi:10.1007/s00208-016-1451-9
[116] Kaliman, S.; Makar-Limanov, L., On the Russell-Koras contractible threefolds, J. Algebraic Geom., 6, 247-268 (1997) · Zbl 0897.14010
[117] Kaliman, S.; Zaidenberg, M., Affine modifications and affine hypersurfaces with a very transitive automorphism group, Transform. Groups, 4, 53-95 (1999) · Zbl 0956.14041 · doi:10.1007/BF01236662
[118] Kodaira, K., Holomorphic mappings of polydiscs into compact complex manifolds, J. Differential Geometry, 6, 33-46 (1971) · Zbl 0227.32008 · doi:10.4310/jdg/1214430217
[119] Kraft, H., Geometrische Methoden in der Invariantentheorie (1984), Braunschweig: Vieweg & Sohn, Braunschweig · Zbl 0569.14003 · doi:10.1007/978-3-322-83813-1
[120] Kraft, H., Automorphism groups of affine varieties and a characterization of affine n-space, Trans. Moscow Math. Soc., 78, 171-186 (2017) · Zbl 1423.14267 · doi:10.1090/mosc/262
[121] Y. Kusakabe, Oka properties of complements of holomorphically convex sets, arXiv: 2005.08247 (2020). · Zbl 1453.32012
[122] Kusakabe, Y., Elliptic characterization and localization of Oka manifolds, Indiana Univ. Math. J., 70, 1039-1054 (2021) · Zbl 1479.32012 · doi:10.1512/iumj.2021.70.8454
[123] Kutzschebauch, F., Andersáen-Lempert-theory with parameters: a representation theoretic point of view, J. Algebra Appl., 4, 325-340 (2005) · Zbl 1077.32010 · doi:10.1142/S0219498805001216
[124] Kutzschebauch, F., Manifolds with infinite dimensional group of holomorphic automorphisms and the linearization problem, Handbook of Group Actions., 257-300 (2020), Somerville, MA: Int. Press, Somerville, MA · Zbl 1453.32026
[125] Kutzschebauch, F.; Lárusson, F.; Schwarz, G. W., Sufficient conditions for holomorphic linearisation, Transform. Groups, 22, 475-485 (2017) · Zbl 1379.32019 · doi:10.1007/s00031-016-9376-7
[126] Kutzschebauch, F.; Leuenberger, M.; Liendo, A., The algebraic density property for affine toric varieties, J. Pure Appl. Algebra, 219, 3685-3700 (2015) · Zbl 1343.32015 · doi:10.1016/j.jpaa.2014.12.017
[127] Kutzschebauch, F.; Lø w, E.; F. S. Wold, E., Embedding some Riemann surfaces into ℂ^2 with interpolation, Math. Z., 262, 603-611 (2009) · Zbl 1168.32010 · doi:10.1007/s00209-008-0392-8
[128] Kutzschebauch, F.; Poloni, P-M, Embedding Riemann surfaces with isolated punctures into the complex plane, Proc.Amer.Math.Soc., 148, 4831-4835 (2020) · Zbl 1452.32013 · doi:10.1090/proc/15111
[129] Kutzschebauch, F.; Ramos-Peon, A., An Oka principle for a parametric infinite transitivity property, J. Geom. Anal., 27, 2018-2043 (2017) · Zbl 1380.32020 · doi:10.1007/s12220-016-9749-0
[130] F. Kutzschebauch and G. W. Schwarz, A characterization of linearizability for holomorphic ℂ*-actions, Internat. Math. Res. Notices (2021). · Zbl 1503.32013
[131] Kutzschebauch, F.; Wold, E. F., Carleman approximation by holomorphic automorphisms of ℂ^n, J. Reine Angew. Math., 738, 131-148 (2018) · Zbl 1402.32024 · doi:10.1515/crelle-2015-0056
[132] Leau, L., Étude sur les équations fonctionelles à une ou plusieurs variables, Toulouse Ann., 11, e25-e110 (1897) · JFM 28.0346.02 · doi:10.5802/afst.137
[133] Leuenberger, M., (Volume) density property of a family of complex manifolds including the Koras-Russell cubic threefold, Proc. Amer. Math. Soc., 144, 3887-3902 (2016) · Zbl 1345.32023 · doi:10.1090/proc/13030
[134] Løw, E.; Pereira, J. V.; Peters, H.; Wold, E. F., Polynomial completion of symplectic jets and surfaces containing involutive lines, Math. Ann., 364, 519-538 (2016) · Zbl 1334.32007 · doi:10.1007/s00208-015-1217-9
[135] Majcen, I., Embedding certain infinitely connected subsets of bordered Riemann surfaces properly into ℂ^2, J. Geom. Anal., 19, 695-707 (2009) · Zbl 1172.32300 · doi:10.1007/s12220-009-9076-9
[136] Majcen, I., Proper holomorphic embeddings of finitely connected planar domains into ℂ^n, Ark. Mat., 51, 329-343 (2013) · Zbl 1273.32021 · doi:10.1007/s11512-012-0171-y
[137] Makar-Limanov, L., On the hypersurface x+x^2y+z^2+t^3 = 0 in ℂ^4 or a ℂ^3-like threefold which is not ℂ^3, Israel J. Math., 96, 419-429 (1996) · Zbl 0896.14021 · doi:10.1007/BF02937314
[138] Miyanishi, M.; Sugie, T., Affine surfaces containing cylinderlike open sets, J. Math. Kyoto Univ., 20, 11-42 (1980) · Zbl 0445.14017
[139] Moser-Jauslin, L., Automorphism groups of Koras-Russell threefolds of the first kind, Affine Algebraic Geometry, 261-270 (2011), Providence, RI: Amer. Math. Soc., Providence, RI · Zbl 1257.14029 · doi:10.1090/crmp/054/15
[140] Narasimhan, R., Imbedding of holomorphically complete complex spaces, Amer. J. Math., 82, 917-934 (1960) · Zbl 0104.05402 · doi:10.2307/2372949
[141] Nishimura, Y., Automorphismes analytiques admettant des sous-variáetáes de points fixés attractives dans la direction transversale, J. Math. Kyoto Univ., 23, 289-299 (1983) · Zbl 0545.32014
[142] Nishimura, Y., Applications holomorphes injectives de ℂ^2 dans lui-même qui exceptent une droite complexe, J. Math. Kyoto Univ., 24, 755-761 (1984) · Zbl 0574.32036
[143] Oka, K., Sur les fonctions analytiques de plusieurs variables. III. Deuxieme probleme de Cousin, J. Sci. Hiroshima Univ., Ser. A, 9, 7-19 (1939) · Zbl 0020.24002
[144] Peters, H.; Vivas, L. R.; Wold, E. F., Attracting basins of volume preserving automorphisms of ℂ^k, Internat. J. Math., 19, 801-810 (2008) · Zbl 1149.37027 · doi:10.1142/S0129167X08004893
[145] Picard, E., Sur une classe de surfaces algóebriques dont les coordonnóees s’expriment par des fonctions uniformes de deux paramètres, Bull. Soc. Math. Fr., 28, 17-25 (1900) · JFM 31.0617.02 · doi:10.24033/bsmf.618
[146] Picard, E., Sur certaines eóquations fonctionnelles et sur une classe de surfaces algebriques, C. R. Acad. Sci., Paris, 139, 5-9 (1905) · JFM 35.0421.02
[147] Poincaróe, H., Sur une classe nouvelle de transcendantes uniformes, J. Math. Pures. Appl. (4), 6, 313-365 (1890) · JFM 22.0420.01
[148] Poincaróe, H., Sur l’uniformisation des fonctions analytiques, Acta Math., 31, 1-64 (1907) · JFM 38.0452.02 · doi:10.1007/BF02415442
[149] Ramanujam, C. P., A topological characterisation of the affine plane as an algebraic variety, Ann. of Math. (2), 94, 69-88 (1971) · Zbl 0218.14021 · doi:10.2307/1970735
[150] Ramos-Peon, A., Non-algebraic examples of manifolds with the volume density property, Proc.Amer. Math.Soc., 145, 3899-3914 (2017) · Zbl 1380.32021 · doi:10.1090/proc/13565
[151] Ramos-Peon, A.; Ugolini, R., Parametric jet interpolation for Stein manifolds with the density property, Internat. J. Math., 30, 1950046 (2019) · Zbl 1432.32009 · doi:10.1142/S0129167X19500460
[152] Reich, L., Das Typenproblem bei formal-biholomorphen Abbildungen mit anziehendem Fixpunkt, Math. Ann., 179, 227-250 (1969) · Zbl 0177.34403 · doi:10.1007/BF01358490
[153] Reich, L., Normalformen biholomorpher Abbildungen mit anziehendem Fixpunkt, Math. Ann., 180, 233-255 (1969) · Zbl 0177.34501 · doi:10.1007/BF01350741
[154] Remmert, R., Sur les espaces analytiques holomorphiquement sóeparables et holomorphiquement convexes, C. R. Acad. Sci. Paris, 243, 118-121 (1956) · Zbl 0070.30401
[155] Rosay, J-P; Rudin, W., Holomorphic maps from ℂ^n to ℂ^n, Trans. Amer. Math. Soc., 310, 47-86 (1988) · Zbl 0708.58003
[156] Rosay, J-P; Rudin, W., Holomorphic embeddings of ℂ in ℂ^n, Several Complex Variables, 563-569 (1993), Princeton, NJ: Princeton Univ. Press, Princeton, NJ · Zbl 0779.32022
[157] Rudin, W., Injective polynomial maps are automorphisms, Amer. Math. Monthly, 102, 540-543 (1995) · Zbl 0972.32015 · doi:10.1080/00029890.1995.12004615
[158] Schoen, R.; Yau, S. T., Lectures on Harmonic Maps (1997), Cambridge, MA: International Press, Cambridge, MA · Zbl 0886.53004
[159] Schurmann, J., Embeddings of Stein spaces into affine spaces of minimal dimension, Math. Ann., 307, 381-399 (1997) · Zbl 0881.32007 · doi:10.1007/s002080050040
[160] Shafarevich, I. R., On some infinite-dimensional groups, Rend. Mat. e Appl. (5), 25, 208-212 (1966) · Zbl 0149.39003
[161] Shafarevich, I. R., On some infinite-dimensional groups. II, Izv. Akad. Nauk SSSR Ser. Mat., 45, 214-226 (1981) · Zbl 0475.14036
[162] Stehle, J-L, Plongements du disque dans ℂ^2, Séminaire Pierre Lelong (Analyse), 119-130 (1972), Berlin: Springer, Berlin · Zbl 0245.32007
[163] Stein, K., Überlagerungen holomorph-vollstäandiger komplexer Räume, Arch. Math. (Basel), 7, 354-361 (1956) · Zbl 0072.08002 · doi:10.1007/BF01900686
[164] Stensønes, B., Fatou-Bieberbach domains with \({{\cal C}^\infty}\)-smooth boundary, Ann. of Math. (2), 145, 365-377 (1997) · Zbl 0883.32020 · doi:10.2307/2951817
[165] Sternberg, S., Local contractions and a theorem of Poincaróe, Amer. J. Math., 79, 809-824 (1957) · Zbl 0080.29902 · doi:10.2307/2372437
[166] Stolzenberg, G., The analytic part of the Runge hull, Math. Ann., 164, 286-290 (1966) · Zbl 0141.27303 · doi:10.1007/BF01360253
[167] Stolzenberg, G., Uniform approximation on smooth curves, Acta Math., 115, 185-198 (1966) · Zbl 0143.30005 · doi:10.1007/BF02392207
[168] Stout, E. L., Bounded holomorphic functions on finite Riemann surfaces, Trans. Amer. Math. Soc., 120, 255-285 (1965) · Zbl 0154.32903
[169] Suzuki, M., Propriétés topologiques des polynômes de deux variables complexes, et automorphismes algáebriques de l’espace ℂ^2, J. Math. Soc. Japan, 26, 241-257 (1974) · Zbl 0276.14001 · doi:10.2969/jmsj/02620241
[170] Tóth, Á.; Varolin, D., Holomorphic diffeomorphisms of complex semisimple Lie groups, Invent. Math., 139, 351-369 (2000) · Zbl 0956.32022 · doi:10.1007/s002229900029
[171] Ugolini, R., A parametric jet-interpolation theorem for holomorphic automorphisms of ó^n, J. Geom. Anal., 27, 2684-2699 (2017) · Zbl 1391.32032 · doi:10.1007/s12220-017-9778-3
[172] Varolin, D., A general notion of shears, and applications, Michigan Math. J., 46, 533-553 (1999) · Zbl 0966.32013 · doi:10.1307/mmj/1030132478
[173] Varolin, D., The density property for complex manifolds and geometric structures. II, Internat. J. Math., 11, 837-847 (2000) · Zbl 0977.32016 · doi:10.1142/S0129167X00000404
[174] Varolin, D., The density property for complex manifolds and geometric structures, J. Geom. Anal., 11, 135-160 (2001) · Zbl 0994.32019 · doi:10.1007/BF02921959
[175] Wermer, J., An example concerning polynomial convexity, Math. Ann., 139, 147-150 (1959) · Zbl 0094.28302 · doi:10.1007/BF01354873
[176] Winkelmann, J., Tame discrete subsets in Stein manifolds, J. Aust. Math. Soc., 107, 110-132 (2019) · Zbl 1434.32033 · doi:10.1017/S1446788718000241
[177] Wold, E. F., Fatou-Bieberbach domains, Internat. J. Math., 16, 1119-1130 (2005) · Zbl 1085.32008 · doi:10.1142/S0129167X05003235
[178] Wold, E. F., Embedding Riemann surfaces properly into ℂ^2, Internat. J. Math., 17, 963-974 (2006) · Zbl 1109.32013 · doi:10.1142/S0129167X06003746
[179] Wold, E. F., Proper holomorphic embeddings of finitely and some infinitely connected subsets of ℂ into ℂ^2, Math. Z., 252, 1-9 (2006) · Zbl 1086.32015 · doi:10.1007/s00209-005-0836-3
[180] Wold, E. F., Embedding subsets of tori properly into ℂ^2, Ann. Inst. Fourier (Grenoble), 57, 1537-1555 (2007) · Zbl 1149.32015 · doi:10.5802/aif.2305
[181] Wold, E. F., A Fatou-Bieberbach domain in ℂ^2 which is not Runge, Math. Ann., 340, 775-780 (2008) · Zbl 1137.32002 · doi:10.1007/s00208-007-0168-1
[182] Wold, E. F., A long ℂ^2 which is not Stein, Ark. Mat., 48, 207-210 (2010) · Zbl 1189.32004 · doi:10.1007/s11512-008-0084-y
[183] Wold, E. F., A Fatou-Bieberbach domain intersecting the plane in the unit disk, Proc. Amer. Math. Soc., 140, 4205-4208 (2012) · Zbl 1310.32015 · doi:10.1090/S0002-9939-2012-11267-5
[184] Yang, P., Curvature of complex submanifolds of ℂ^n, Several Complex Variables, 135-137 (1975), Williamstown, Mass: Williams Coll., Williamstown, Mass · Zbl 0355.53035
[185] Yang, P., Curvatures of complex submanifolds of ℂ^n, J. Differential Geom., 12, 499-511 (1977) · Zbl 0409.53043 · doi:10.4310/jdg/1214434221
[186] Zaĭdenberg, M., Exotic algebraic structures on affine spaces, Algebra i Analiz, 11, 3-73 (1999)
[187] Zentner, R., Integer homology 3-spheres admit irreducible representations in SL(2, ℂ), Duke Math. J., 167, 1643-1712 (2018) · Zbl 1407.57008 · doi:10.1215/00127094-2018-0004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.