×

Embedding subsets of tori properly into \(\mathbb C^2\). (English) Zbl 1149.32015

This paper is a contribution to the problem of embedding Riemann surfaces properly into \(\mathbb{C}^{2}\). It is known that for \(d \geq 2\), the number \([3d/2]+1\) gives the smallest dimension \(N_{d}\) so that every \(d\)-dimensional Stein manifold can be embedded properly into \(\mathbb{C}^{N_{d}}\). The case \(d=1\), i.e., the question of embedding a one-dimensional Stein manifold properly into \(\mathbb{C}^{2}\), is open.
In the paper under review, the author proves the following result. Let \(\mathbb{T}\) be a one-dimensional complex torus and consider subsets with finitely many boundary components, none of which are points. Such subsets can be properly embedded into \(\mathbb{C}^{2}\).
The author also shows that the algebras of analytic functions on certain countably connected subsets of closed Riemann surfaces are doubly generated.

MSC:

32Q40 Embedding theorems for complex manifolds
32H35 Proper holomorphic mappings, finiteness theorems
32A38 Algebras of holomorphic functions of several complex variables

References:

[1] Ahlfors, L. V., Complex Analysis. (1966) · Zbl 0154.31904
[2] Alexander, H., Explicit imbedding of the (punctured) disc into \(\mathbb{C}^2\)., Math.Helv., 52, 439-544 (1977) · Zbl 0376.32011 · doi:10.1007/BF02567387
[3] Behnke, H.; Stein, K., Entwicklung analytisher Funktionen auf Riemannschen Flachen., Math. Ann., 120, 430-461 (1949) · Zbl 0038.23502 · doi:10.1007/BF01447838
[4] Eliashberg, Y.; Gromov, M., Embeddings of Stein manifolds of dimension \(n\) into the affine space of dimension \(3n/2+1\), Ann.Math., 136, 123-135 (1992) · Zbl 0758.32012 · doi:10.2307/2946547
[5] Forster, O., Plongements des variétés de Stein., Comm.Math.Helv., 45, 170-184 (1970) · Zbl 0184.31403 · doi:10.1007/BF02567324
[6] Forster, O., Lectures on Riemann Surfaces (1999) · Zbl 0475.30002
[7] Forstnerič, F.; Černe, M., Embedding some bordered Riemann surfaces in the affine plane., Math. Res. Lett., 9, 683-696 (2002) · Zbl 1030.32013
[8] Forstnerič, F., The homotopy principle in complex analysis: A survey., Contemp. Math., Amer. Math. Soc., Providence, RI, 332, 73-99 (2003) · Zbl 1048.32004
[9] Forstnerič, F.; Løw, E., Global holomorphic equivalence of smooth manifolds in \(\mathbb{C}^k\), Indiana Univ.Math.J., 46, 133-153 (1997) · Zbl 0883.32014 · doi:10.1512/iumj.1997.46.1348
[10] Globevnik, J.; Stensønes, B., Holomorphic embeddings of some planar domains into \(\mathbb{C}^2\), Math. Ann., 303, 579-597 (1995) · Zbl 0847.32030 · doi:10.1007/BF01461006
[11] Goluzin, G. M., Geometric theorey of functions of a complex variable. (1969) · Zbl 0183.07502
[12] Gunning, R. C.; Rossi, H., Analytic functions of several complex variables (1965) · Zbl 0141.08601
[13] He, Z-X.; Schramm, O., Fixed points, Koebe uniformization, and circle packings., Ann.Math., 137, 369-406 (1993) · Zbl 0777.30002 · doi:10.2307/2946541
[14] Kasahara, K.; Nishino, T., As announced in Math Reviews., Math.Reviews., 38 (1969)
[15] Laufer, H. B., Imbedding annuli in \(\mathbb{C}^2\)., J. d’Analyse Math., 26, 187-215 (1973) · Zbl 0286.32017 · doi:10.1007/BF02790429
[16] Malgrange, B., Existence et approximation des solutions des équations aux dérivées partielles et des équations de convolution., Ann. Inst. Fourier, 6, 271-354 (195556) · Zbl 0071.09002 · doi:10.5802/aif.65
[17] Schurmann, J., Embeddings of Stein spaces into affine spaces of minimal dimension., Math.Ann., 307, 381-399 (1997) · Zbl 0881.32007 · doi:10.1007/s002080050040
[18] Stolzenberg, G., Uniform approximation on smooth curves., Acta Math., 115, 185-198 (1966) · Zbl 0143.30005 · doi:10.1007/BF02392207
[19] Wold, E. F., Embedding Riemann surfaces into \(\mathbb{C}^2\)., Internat.J.Math, 17, 963-974 (2006) · Zbl 1109.32013 · doi:10.1142/S0129167X06003746
[20] Wold, E. F., Proper holomorphic embeddings of finitely and some infinitely connected subsets of \(\mathbb{C}\) into \(\mathbb{C}^2\)., Math.Z., 252, 1-9 (2006) · Zbl 1086.32015 · doi:10.1007/s00209-005-0836-3
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.