×

Non-algebraic examples of manifolds with the volume density property. (English) Zbl 1380.32021

Let \(f \in \mathcal O(\mathbb C^n)\), \(n \geq 2\), be a non-constant holomorphic function with \(df\) not identically zero on the level set \(X_0 = f^{-1}(0)\) and such that \(\tilde H^{n-2}(X_0) = 0\). Let also \(\overline{\mathbb C^n_f}\) be the suspension of \(\mathbb C^n\) by \(f\), i.e., the hypersurface of \(\mathbb C^{n+2}\) defined by the equation \(z_{n+1} z_{n+2} = f(z_1, \ldots, z_n)\). In this paper, the author first presents a new criterion for checking whether a complex manifold satisfies the volume density property (shortly, VDP), i.e., whether the Lie algebra of complete divergence free vector fields is dense in the full Lie algebra of divergence free vector fields. Secondly, he uses such new criterion to show that each of the above described suspensions \(\overline{\mathbb C^n_f}\) has the volume density property with respect to the volume form \(\widetilde \omega\) determined by the condition \(d(z_{n+1} z_{n+2} - f) \wedge \widetilde \omega = d z_1 \wedge \ldots \wedge d z_n \wedge d z_{n+1} \wedge d z_{n+2}\). By appropriately choosing \(f\), this result gives the first examples of manifolds with VDP that are not biholomorphic to any algebraic manifold. The new construction gives also potential counterexamples to the Zariski Cancellation Problem.

MSC:

32M17 Automorphism groups of \(\mathbb{C}^n\) and affine manifolds
32H02 Holomorphic mappings, (holomorphic) embeddings and related questions in several complex variables
32M25 Complex vector fields, holomorphic foliations, \(\mathbb{C}\)-actions

References:

[1] Arzhantsev, Ivan; Flenner, Hubert; Kaliman, Shulim; Kutzschebauch, Frank; Zaidenberg, Mikhail, Infinite transitivity on affine varieties. Birational geometry, rational curves, and arithmetic, 1-13 (2013), Springer, New York · Zbl 1312.14137 · doi:10.1007/978-1-4614-6482-2\_1
[2] Anders{\'e}n, Erik; Lempert, L{\'a}szl{\'o}, On the group of holomorphic automorphisms of \({\bf C}^n\), Invent. Math., 110, 2, 371-388 (1992) · Zbl 0770.32015 · doi:10.1007/BF01231337
[3] Anders{\'e}n, Erik, Volume-preserving automorphisms of \({\bf C}^n\), Complex Variables Theory Appl., 14, 1-4, 223-235 (1990) · Zbl 0705.58008
[4] Borell, Stefan; Kutzschebauch, Frank, Non-equivalent embeddings into complex Euclidean spaces, Internat. J. Math., 17, 9, 1033-1046 (2006) · Zbl 1122.32009 · doi:10.1142/S0129167X06003795
[5] Donzelli, F.; Dvorsky, A.; Kaliman, S., Algebraic density property of homogeneous spaces, Transform. Groups, 15, 3, 551-576 (2010) · Zbl 1201.14041 · doi:10.1007/s00031-010-9091-8
[6] Derksen, Harm; Kutzschebauch, Frank, Nonlinearizable holomorphic group actions, Math. Ann., 311, 1, 41-53 (1998) · Zbl 0911.32042 · doi:10.1007/s002080050175
[7] Forstneric, Franc, Interpolation by holomorphic automorphisms and embeddings in \({\bf C}^n\), J. Geom. Anal., 9, 1, 93-117 (1999) · Zbl 0963.32006 · doi:10.1007/BF02923090
[8] Forstneri{\v{c}}, Franc; Rosay, Jean-Pierre, Approximation of biholomorphic mappings by automorphisms of \({\bf C}^n\), Invent. Math., 112, 2, 323-349 (1993) · Zbl 0792.32011 · doi:10.1007/BF01232438
[9] Globevnik, Josip, A bounded domain in \({\bf C}^N\) which embeds holomorphically into \({\bf C}^{N+1} \), Ark. Mat., 35, 2, 313-325 (1997) · Zbl 0949.32010 · doi:10.1007/BF02559972
[10] Hans Grauert and Reinhold Remmert, Theory of Stein spaces, Classics in Mathematics, Springer-Verlag, Berlin, 1979, Translated from the German by Alan Huckleberry, Reprint of the 1979 translation. · Zbl 0433.32007
[11] Kaliman, Shulim, Isotopic embeddings of affine algebraic varieties into \({\bf C}^n\). The Madison Symposium on Complex Analysis, Madison, WI, 1991, Contemp. Math. 137, 291-295 (1992), Amer. Math. Soc., Providence, RI · Zbl 0768.14005 · doi:10.1090/conm/137/1190990
[12] Kaliman, Shulim; Kutzschebauch, Frank, Criteria for the density property of complex manifolds, Invent. Math., 172, 1, 71-87 (2008) · Zbl 1143.32014 · doi:10.1007/s00222-007-0094-6
[13] Kaliman, Shulim; Kutzschebauch, Frank, Density property for hypersurfaces \(UV=P(\overline X)\), Math. Z., 258, 1, 115-131 (2008) · Zbl 1133.32012 · doi:10.1007/s00209-007-0162-z
[14] Kaliman, Shulim; Kutzschebauch, Frank, Algebraic volume density property of affine algebraic manifolds, Invent. Math., 181, 3, 605-647 (2010) · Zbl 1211.14067 · doi:10.1007/s00222-010-0255-x
[15] Shulim Kaliman and Frank Kutzschebauch, On the present state of the Anders\'en-Lempert theory, Affine algebraic geometry, CRM Proc. Lecture Notes, vol. 54, Amer. Math. Soc., Providence, RI, 2011, pp. 85-122. · Zbl 1266.32028
[16] Kaliman, Sh.; Kutzschebauch, F., On algebraic volume density property, Transform. Groups, 21, 2, 451-478 (2016) · Zbl 1397.32006 · doi:10.1007/s00031-015-9360-7
[17] Kaliman, Shulim; Kutzschebauch, Frank, On the density and the volume density property. Complex analysis and geometry, Springer Proc. Math. Stat. 144, 175-186 (2015), Springer, Tokyo · Zbl 1326.32037 · doi:10.1007/978-4-431-55744-9\_12
[18] Shulim Kaliman and Mikhail Zaidenberg, Affine modifications and affine hypersurfaces with a very transitive automorphism group, Transform. Groups 4 (1999), no. 1, 53-95. · Zbl 0956.14041
[19] Leuenberger, Matthias, (Volume) density property of a family of complex manifolds including the Koras-Russell cubic threefold, Proc. Amer. Math. Soc., 144, 9, 3887-3902 (2016) · Zbl 1345.32023 · doi:10.1090/proc/13030
[20] Milnor, John W.; Stasheff, James D., Characteristic classes, vii+331 pp. (1974), Princeton University Press, Princeton, N. J.; University of Tokyo Press, Tokyo · Zbl 1079.57504
[21] Stehl{\'e}, Jean-Luc, Plongements du disque dans \(C^2\). S\'eminaire Pierre Lelong (Analyse), Ann\'ee 1970-1971, 119-130. Lecture Notes in Math., Vol. 275 (1972), Springer, Berlin · Zbl 0233.00008
[22] Toth, Arpad; Varolin, Dror, Holomorphic diffeomorphisms of complex semisimple Lie groups, Invent. Math., 139, 2, 351-369 (2000) · Zbl 0956.32022 · doi:10.1007/s002229900029
[23] Varolin, Dror, A general notion of shears, and applications, Michigan Math. J., 46, 3, 533-553 (1999) · Zbl 0966.32013 · doi:10.1307/mmj/1030132478
[24] Varolin, Dror, The density property for complex manifolds and geometric structures, J. Geom. Anal., 11, 1, 135-160 (2001) · Zbl 0994.32019 · doi:10.1007/BF02921959
[25] Zaidenberg, Mikhail G., On exotic algebraic structures on affine spaces. Geometric complex analysis, Hayama, 1995, 691-714 (1996), World Sci. Publ., River Edge, NJ · Zbl 0934.14042
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.