×

Approximation by automorphisms on smooth submanifolds of \(\mathbb{C}^ n\). (English) Zbl 0821.32028

The following result is proved. Suppose \(M \subset \mathbb{C} C^ n (n \geq 2)\) is a compact, totally real, polynomially convex submanifold of class \({\mathcal C}^ p (1 \leq p < \infty)\) and \(F : M \to \mathbb{C} C^ n\) is a \({\mathcal C}^ p\) mapping. Then the following are equivalent.
(i) For every \(\varepsilon > 0\) there exists a \(\Phi \in \operatorname{Aut} \mathbb{C} C^ n\) such that \(\| F - \Phi |_ -M \|_{{\mathcal C}^ p (M)} < \varepsilon\).
(ii) For every \(\varepsilon > 0\) there exists a totally real, polynomially convex isotopy \(F_ t : M \to \mathbb{C} C^ n (t \in [0,1])\) of class \({\mathcal C}^ p\) such that \(F_ 0\) is the identity on \(M\) and \(\| F_ 1 - F \|_{{\mathcal C}^ p (M)} < \varepsilon\).
This is then used to prove the following. Suppose \(M \subset \mathbb{C} C^ n\) is a compact, totally real, polynomial convex submanifold of dimension at most \(2n/3\) and of class \({\mathcal C}^ p\), \(2 \leq p < \infty\). Then for every \({\mathcal C}^ p\) mapping \(F : M \to \mathbb{C} C^ n\) and for every \(\varepsilon > 0\) there exists a holomorphic automorphism \(\Phi\) of \(\mathbb{C} C^ n\) such that \(\| F - \Phi |_ M \|_{{\mathcal C}^ p (M)} < \varepsilon\). If, in addition, \(F\) and \(M\) are real analytic and \(F(M)\) is totally real and polynomial convex, then \(F\) extends to a biholomorphic mapping in some neighborhood \(U\) of \(M\) which can be approximated uniformly on \(U\) by holomorphic automorphisms of \(\mathbb{C} C^ n\).

MSC:

32M05 Complex Lie groups, group actions on complex spaces
32E30 Holomorphic, polynomial and rational approximation, and interpolation in several complex variables; Runge pairs

References:

[1] Abraham, R., Marsed, J.E.: Foundations of Mechanics, 2nd. ed. Reading: Benjamin 1987
[2] Alexander, H.: The polynomial hull of a rectifiable curve in C n . Am. J. Math.110, 629-640 (1988) · Zbl 0659.32017 · doi:10.2307/2374644
[3] Alexander, H.: A note on polynomial hulls. Proc. Am. Math. Soc.33, 389-391 (1972) · Zbl 0239.32013 · doi:10.1090/S0002-9939-1972-0294689-0
[4] Alexander, H.: Linking and holomorphic hulls. (Preprint 1992) · Zbl 0792.32010
[5] Anders?n, E.: Volume-preserving automorphisms of C n . Complex Variables14, 223-235 (1990) · Zbl 0705.58008
[6] Anders?n, E., Lempert, L.: On the group of holomorphic automorphisms of C n . Invent. Math.110, 371-388 (1992) · Zbl 0770.32015 · doi:10.1007/BF01231337
[7] Baouendi, M.S., Treves, F.: A property of the functions and distributions annihilated by a locally integrable system of complex vector fields. Ann. Math.113, 387-421 (1981) · Zbl 0491.35036 · doi:10.2307/2006990
[8] Berndtsson, B.: Integral kernels and approximation on totally real submanifolds of C n . Math. Ann.243, 125-129 (1979) · doi:10.1007/BF01420419
[9] Boggess, A.: CR Manifolds and the Tangential Cauchy-Riemann Complex. Boca Raton: CRC Press 1991 · Zbl 0760.32001
[10] Duval, J.: Convexit? rationelle des surfaces lagrangiennes. Invent. Math.104, 581-599 (1991) · Zbl 0699.32008 · doi:10.1007/BF01245091
[11] Forstneric, F., Rosay, J.-P.: Approximation of biholomorphic mappings by automorphisms of C n . Invent. Math.112, 323-349 (1993) · Zbl 0792.32011 · doi:10.1007/BF01232438
[12] Forstneric, F.: Stability of polynomial convexity of totally real sets. Proc. Am. Math. Soc.96, 489-494 (1986) · Zbl 0588.32016
[13] Forstneric, F.: Complements of Runge domains and holomorphic hulls. Mich. Math. J. (to appear) · Zbl 0811.32007
[14] Harvey, F.R., Wells, R.O.: Holomorphic approximation and hyperfunction theory on aC 1 totally real submanifold of a complex manifold. Math. Ann.197, 287-318 (1972) · Zbl 0246.32019 · doi:10.1007/BF01428202
[15] Hirsch, M.: Differential Topology. (Grad. Texts Math., vol. 33) Berlin Heidelberg New York: Springer 1976
[16] H?rmander, L., Wermer, J.: Uniform approximation on compact sets in C n . Math. Scand.23, 5-21 (1968) · Zbl 0181.36201
[17] H?rmander, L.: An Introduction to Complex Analysis in Several Variables, 3rd ed. Amsterdam: North Holland 1990
[18] Range, R.M. and Siu, Y.T.:C k approximation. by holomorphic functions and 738-3 forms onC k submanifolds of a complex manifold. Math. Ann.210, 105-122 (1974) · doi:10.1007/BF01360034
[19] Rosay, J.-P.: Straightening of arcs. (Proc. Conf. Complex Analysis, Luminy 1992) Asterisque (to appear) · Zbl 0798.32015
[20] Rosay, J.-P., Rudin, W.: Holomorphic maps from C n to C n . Trans. Am. Math. Soc.310, 47-86 (1988) · Zbl 0708.58003
[21] Steenrod, N.: The Topology of Fibre Bundles. Princeton: Princeton Univ. Press 1951 · Zbl 0054.07103
[22] Stolzenberg, G.: Polynomially and rationally convex sets. Acta Math.109, 259-289 (1963) · Zbl 0122.08404 · doi:10.1007/BF02391815
[23] Stout, E.L.: The Theory of Uniform Algebras. Tarrytown on Hudson: Bogden and Quigley 1971 · Zbl 0286.46049
[24] Wermer, J.: The hull of a curve in C n . Ann. Math.68, 550-561 (1958) · Zbl 0084.33402 · doi:10.2307/1970155
[25] Forstneric, F.: Actions of (R,+) and (C,+) on complex manifolds. Math. Z. (to appear) · Zbl 0872.32021
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.