×

New constructions of orbit codes based on imprimitive wreath products and wreathed tensor products. (English) Zbl 07797012

Summary: Orbit codes, as special constant dimension codes, have attracted much attention due to their applications for error correction in random network coding. They arise as orbits of a subspace of \({\mathbb{F}}^n_q\) under the action of some subgroup of the finite general linear group \(\mathrm{GL}_n(q)\). The aim of this paper is to present constructions of large non-Abelian orbit codes having the maximum possible distance. The properties of imprimitive wreath products and wreathed tensor products of groups are employed to select certain types of subspaces and their stabilizers, thereby providing a systematic way of constructing orbit codes with optimum parameters. We also present explicit examples of such constructions which improve the parameters of the construction already obtained in [J.-J. Climent et al., Cryptogr. Commun. 11, No. 5, 839–852 (2019; Zbl 1419.94082)].

MSC:

94B60 Other types of codes

Citations:

Zbl 1419.94082

Software:

OEIS
Full Text: DOI

Online Encyclopedia of Integer Sequences:

Number of primitive permutation groups of degree n.

References:

[1] Ahlswede, R.; Cai, N.; Li, S-YR; Yeung, RW, Network information flow, IEEE Trans. Inf. Theory, 46, 4, 1204-1216 (2000) · Zbl 0991.90015 · doi:10.1109/18.850663
[2] Bardestani, F.; Iranmanesh, A., Cyclic orbit codes with the normalizer of a Singer subgroup, J. Sci. Islamic Republic Iran, 26, 1, 49-55 (2015)
[3] Bastos, G.; Junior, RP; Guerreiro, M., Abelian noncyclic orbit codes and multishot subspace codes, Adv. Math. Commun., 14, 631-650 (2020) · Zbl 1480.94047 · doi:10.3934/amc.2020035
[4] Bray, JN; Holt, D.; Roney-Dougal, C., The Maximal Subgroups of the Low-Dimensional Finite Classical Groups (2013), Cambridge: Cambridge University Press, Cambridge · Zbl 1303.20053 · doi:10.1017/CBO9781139192576
[5] Ben-Sasson, E.; Etzion, T.; Gabizon, A.; Raviv, N., Subspace polynomials and cyclic subspace codes, IEEE Trans. Inf. Theory, 62, 3, 1157-1165 (2016) · Zbl 1359.94757 · doi:10.1109/TIT.2016.2520479
[6] Chen, SD; Liang, JY, New Constructions of Orbit Codes Based on the Operations of Orbit Codes, Acta Math. Appl. Sin. Engl. Ser., 36, 803-815 (2020) · Zbl 1464.94020 · doi:10.1007/s10255-020-0974-8
[7] Climent, JJ; Requena, V.; Soler-Escriva, X., A construction of Abelian non-cyclic orbit codes, Cryptogr. Commun., 11, 839-852 (2019) · Zbl 1419.94082 · doi:10.1007/s12095-018-0306-5
[8] Coutts, HJ; Quick, M.; Roney-Dougal, CM, The primitive permutation groups of degree less than 4096, Commun. Algebra, 39, 10, 3526-3546 (2011) · Zbl 1234.20001 · doi:10.1080/00927872.2010.515521
[9] Conway, J. H., Curtis, R. T., Norton, S. P., Parker, R. A., Wilson, R. A.: ATLAS of finite groups. Maximal subgroups and ordinary characters for simple groups. With computational assistance from J. G. Thackray. Oxford University Press, Eynsham, (1985) · Zbl 0568.20001
[10] Feng, T.; Wang, Y., New constructions of large cyclic subspace codes and Sidon spaces, Discrete Math., 344, 4, 7 (2021) · Zbl 1484.94030 · doi:10.1016/j.disc.2020.112273
[11] Gluesing-Luerssen, H.; Lehmann, H., Distance distributions of cyclic orbit codes, Des. Codes Cryptography, 89, 3, 447-470 (2021) · Zbl 1460.94086 · doi:10.1007/s10623-020-00823-x
[12] Gluesing-Luerssen, H.; Troha, C., Construction of subspace codes through linkage, Adv. Math. Commun., 10, 525-540 (2017) · Zbl 1348.94106 · doi:10.3934/amc.2016023
[13] Gluesing-Luerssen, H.; Morrison, K.; Troha, C., Cyclic orbit codes and stabilizer subfields, Adv. Math. Commun., 9, 2, 177-197 (2015) · Zbl 1361.94063 · doi:10.3934/amc.2015.9.177
[14] Kotter, R.; Kschischang, FR, Coding for errors and erasures in random network coding, IEEE Trans. Inf. Theory, 54, 8, 3579-3591 (2008) · Zbl 1318.94111 · doi:10.1109/TIT.2008.926449
[15] Manganiello, F., Gorla, E., Rosenthal, J.: Spread codes and spread decoding in network coding. In: Proceedings of the 2008 IEEE international symposium on information theory (ISIT 2008), pp. 881-885, Toronto, Canada. IEEE (2008)
[16] OEIS: Number of primitive permutation groups of degree \(n\), In: The on-line encyclopedia of integer sequences (OEIS). Available: https://oeis.org/A000019
[17] Rose, H. E.: A course on finite groups. Universitext. Springer-Verlag London, Ltd., London, xii+311 pp, (2009) · Zbl 1200.20001
[18] Rosenthal, J.; Trautmann, A-L, A complete characterization of irreducible cyclic orbit codes and their Plucker embedding, Des. Codes Crypt., 66, 275-289 (2013) · Zbl 1280.94115 · doi:10.1007/s10623-012-9691-5
[19] Schneider, H. J.: Hopfalgebren und Quantengruppen, lecture notes at Ludwig-Maximilians-Universität München taken by D. Grinberg (German). Available: http://www.cip.ifi.lmu.de/ grinberg/algebra/hopf.pdf
[20] Trautmann, A.L., Manganiello, F., Rosenthal, J.: Orbit codes—a new concept in the area of network coding. In: Proceedings of the 2010 IEEE information theory workshop (ITW 2010), Dublin, Ireland. IEEE (2010)
[21] Wilson, RA, The Finite Simple Groups, Graduate Text in Mathematics (2009), London: Springer-Verlag, London · Zbl 1203.20012 · doi:10.1007/978-1-84800-988-2
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.