×

New constructions of large cyclic subspace codes and Sidon spaces. (English) Zbl 1484.94030

Summary: Let \(n\) be a positive integer with a factor \(k\) such that \(n \geq 3 k\). Let \(q\) be a prime power, and let \(\mathcal{G}_q ( n , k )\) be the set of all \(k\)-dimensional \(\mathbb{F}_q\)-subspaces of the field \(\mathbb{F}_{q^n} \). In this paper, we construct cyclic subspace codes in \(\mathcal{G}_q ( n , k )\) with minimum distance \(2 k - 2\) and size \(( \lceil \frac{ n}{ 2 k} \rceil - 1 ) \cdot \frac{ ( q^n - 1 ) q^k}{ q - 1} \). In the case \(n = 3 k\), their sizes differ from the sphere-packing bound for subspace codes by a factor of \(\frac{ 1}{ q - 1}\) asymptotically as \(k\) goes to infinity. Our construction makes use of variants of the Sidon spaces constructed by R. M. Roth et al. [IEEE Trans. Inf. Theory 64, No. 6, 4412–4422 (2018; Zbl 1395.94237)] and analogous to the results they attained for the case \(n = 2 k\). We also establish the existence of Sidon spaces of \(\mathcal{G}_q ( 7 k , 2 k )\), and thus we resolve part of the conjecture about the existence of cyclic subspace codes in \(\mathcal{G}_q ( n , k )\) with minimum distance \(2 k - 2\) and size \(\frac{ q^n - 1}{ q - 1} \).

MSC:

94B15 Cyclic codes
11T71 Algebraic coding theory; cryptography (number-theoretic aspects)

Citations:

Zbl 1395.94237
Full Text: DOI

References:

[1] Bachoc, C.; Serra, O.; Zémor, G., An analogue of Vosper’s theorem for extension fields, Math. Proc. Cambridge Philos. Soc., 163, 3, 423-452 (2017) · Zbl 1405.11134
[2] Ben-Sasson, E.; Etzion, T.; Gabizon, A.; Raviv, N., Subspace polynomials and cyclic subspace codes, IEEE Trans. Inform. Theory, 62, 3, 1157-1165 (2016) · Zbl 1359.94757
[3] Braun, M.; Etzion, T.; Östergård, P. R.J.; Vardy, A.; Wassermann, A., Existence of \(q\)-analogs of Steiner systems, Forum Math. Pi, 4, e7, 1-14 (2016) · Zbl 1372.51003
[4] Chen, B.; Liu, H., Constructions of cyclic constant dimension codes, Des. Codes Cryptogr., 86, 6, 1267-1279 (2018) · Zbl 1387.94121
[5] Etzion, T.; Vardy, A., Error-correcting codes in projective space, IEEE Trans. Inform. Theory, 57, 2, 1165-1173 (2011) · Zbl 1366.94589
[6] Gabidulin, E. M.; Pilipchuk, N. I.; Bossert, M., Decoding of random network codes, Probl. Inf. Transm. (Engl. Transl.), 46, 4, 300-320 (2010) · Zbl 1233.94035
[7] Gluesing-Luerssen, H.; Lehmann, H., Distance distributions of cyclic orbit codes (2019), https://arxiv.org/abs/1912.05522v1
[8] Gluesing-Luerssen, H.; Morrison, K.; Troha, C., Cyclic orbit codes and stabilizer subfields, Adv. Math. Commun., 9, 2, 177-197 (2015) · Zbl 1361.94063
[9] Köetter, R.; Kschischang, F. R., Coding for errors and erasures in random network coding, IEEE Trans. Inform. Theory, 54, 8, 3579-3591 (2008) · Zbl 1318.94111
[10] Kohnert, A.; Kurz, S., Construction of large constant dimension codes with a prescribed minimum distance, (Lecture Notes in Comput. Sci., vol. 5392 (2008)), 31-42 · Zbl 1178.94239
[11] Lidl, R.; Niederreiter, H., Finite Fields (1997), Cambridge Univ. Press
[12] Niu, Y.; Yue, Q.; Wu, Y., Several kinds of large cyclic subspace codes via Sidon spaces, Discrete Math., 343, 5, Article 111788 pp. (2020), 11 · Zbl 1468.94486
[13] Otal, K.; Özbudak, F., Cyclic subspace codes via subspace polynomials, Des. Codes Cryptogr., 85, 2, 191-204 (2017) · Zbl 1381.94131
[14] Roth, R. M.; Raviv, N.; Tamo, I., Construction of Sidon spaces with applications to coding, IEEE Trans. Inform. Theory, 64, 6, 4412-4422 (2018) · Zbl 1395.94237
[15] Trautmann, A.-L.; Manganiello, F.; Braun, M.; Rosenthal, J., Cyclic orbit codes, IEEE Trans. Inform. Theory, 59, 11, 7386-7404 (2013) · Zbl 1364.94661
[16] Zhao, W.; Tang, X., A characterization of cyclic subspace codes via subspace polynomials, Finite Fields Appl., 57, 1-12 (2019) · Zbl 1468.94489
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.