×

Cyclic orbit codes and stabilizer subfields. (English) Zbl 1361.94063

Summary: Cyclic orbit codes are constant dimension subspace codes that arise as the orbit of a cyclic subgroup of the general linear group acting on subspaces in the given ambient space. With the aid of the largest subfield over which the given subspace is a vector space, the cardinality of the orbit code can be determined, and estimates for its distance can be found. This subfield is closely related to the stabilizer of the generating subspace. Finally, with a linkage construction larger, and longer, constant dimension codes can be derived from cyclic orbit codes without compromising the distance.

MSC:

94B25 Combinatorial codes

References:

[1] R. Ahlswede, Network information flow,, IEEE Trans. Inf. Theory, IT-46, 1204 (2000) · Zbl 0991.90015 · doi:10.1109/18.850663
[2] M. Braun, Existence of \(q\)-analogs of Steiner systems,, preprint · Zbl 1372.51003
[3] S. El-Zanati, The maximum size of a partial \(3\)-spread in a finite vector space over \(\mathbb F_2\),, Des. Codes Crypt., 54, 101 (2010) · Zbl 1200.51008 · doi:10.1007/s10623-009-9311-1
[4] A. Elsenhans, Construction of codes for network coding,, in Proc. 19th Int. Symp. Math. Theory Netw. Syst., 1811 (2010)
[5] T. Etzion, Error-correcting codes in projective spaces via rank-metric codes and Ferrers diagrams,, IEEE Trans. Inf. Theory, IT-55, 2909 (2009) · Zbl 1367.94414 · doi:10.1109/TIT.2009.2021376
[6] T. Etzion, Error-correcting codes in projective geometry,, IEEE Trans. Inf. Theory, IT-57, 1165 (2011) · Zbl 1366.94589 · doi:10.1109/TIT.2010.2095232
[7] T. Etzion, On \(q\)-analogs of Steiner systems and covering designs,, Adv. Math. Commun., 5, 161 (2011) · Zbl 1227.51005 · doi:10.3934/amc.2011.5.161
[8] E. M. Gabidulin, Theory of codes with maximal rank distance,, Probl. Inf. Transm., 21, 1 (1985) · Zbl 0585.94013
[9] E. M. Gabidulin, Decoding of random network codes,, Probl. Inf. Trans. (Engl. Transl.), 46, 300 (2010) · Zbl 1233.94035 · doi:10.1134/S0032946010040034
[10] A. Khaleghi, Subspace codes,, in Proc. 12th IMA Conf. Crypt. Coding, 1 (2009) · Zbl 1234.94090 · doi:10.1007/978-3-642-10868-6_1
[11] R. Koetter, Coding for errors and erasures in random network coding,, IEEE Trans. Inf. Theory, IT-54, 3579 (2008) · Zbl 1318.94111 · doi:10.1109/TIT.2008.926449
[12] A. Kohnert, Construction of large constant dimension codes with a prescribed minimum distance,, in Mathematical Methods in Computer Science (eds. J. Calmet, 31 (2008) · Zbl 1178.94239 · doi:10.1007/978-3-540-89994-5_4
[13] J. Rosenthal, A complete characterization of irreducible cyclic orbit codes and their Plücker embedding,, Des. Codes Crypt., 66, 275 (2013) · Zbl 1280.94115 · doi:10.1007/s10623-012-9691-5
[14] D. Silva, A rank-metric approach to error control in random network coding,, IEEE Trans. Inf. Theory, IT-54, 3951 (2008) · Zbl 1318.94119 · doi:10.1109/TIT.2008.928291
[15] A.-L. Trautmann, Isometry and automorphisms of constant dimension codes,, Adv. Math. Commun., 7, 147 (2013) · Zbl 1271.94036 · doi:10.3934/amc.2013.7.147
[16] A.-L. Trautmann, Cyclic orbit codes,, IEEE Trans. Inf. Theory, IT-59, 7386 (2013) · Zbl 1364.94661 · doi:10.1109/TIT.2013.2274266
[17] S.-T. Xia, Johnson type bounds on constant dimension codes,, Des. Codes Crypt., 50, 163 (2009) · Zbl 1237.94151 · doi:10.1007/s10623-008-9221-7
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.