×

Distance distributions of cyclic orbit codes. (English) Zbl 1460.94086

The authors study the intersection distribution rather of cyclic orbit codes. The intersection distribution is the number of codeword pairs whose intersection attains a given dimension and this is equivalent to studying the distance distribution.
A cyclic orbit code is a subspace code of the form \(\mathrm{Orb}(U)=\{\alpha U \mid \alpha\in F_{q^n}^\ast\},\) where \(U\) is an \(F_q\)-subspace of the field extension \(F_{q^n}.\) The first major result shows that the distance distribution of optimal full-length orbit codes is fully determined by the parameters \(q,\) \(n,\) and \(k,\) regardless of the choice of the Sidon space. The authors show the minimum and maximum possible value of \(f(U)\) (the number of fractions inside the field \(F_{q^n}\)) over all \(k\)-dimensional subspaces. It is also proved that \(f(U)\) is minimal if and only if \(\text{Orb}(U)\) is a spread code and maximal if and only if \(\text{Orb}(U)\) is an optimal full-length orbit code.
Further on, an investigation in the distance distribution of full-length orbit codes with distance less than \(2k-2\) is performed. distance distribution is not fully determined by \(q, n, k\) and the distance. A description of the distance distribution for the case where the distance is \(2k-4\) is given. Alternatively, the distance distribution is fully determined by \(q, n, k\) and the above mentioned parameter \(f(U).\)
Lastly, the authors consider codes that are the union of optimal full-length orbit codes such that the entire code has distance \(2k-2.\) In the case \((q, n, k) = (2, 13, 3)\), a Steiner system of this form has been found by computer search and here a generalization to unions of optimal full-length orbit codes is proved, that is, the distance distribution is fully determined by \(q, n, k,\) and the number of orbits.

MSC:

94B15 Cyclic codes
11T71 Algebraic coding theory; cryptography (number-theoretic aspects)

References:

[1] Ben-Sasson, E.; Etzion, T.; Gabizon, A.; Raviv, N., Subspace polynomials and cyclic subspace codes, IEEE Trans. Inform. Theory, 62, 3, 1157-1165 (2016) · Zbl 1359.94757 · doi:10.1109/TIT.2016.2520479
[2] Braun, M.; Etzion, T.; Östergård, PRJ; Vardy, A.; Wassermann, A., Existence of \(q\)-analogs of Steiner systems, Forum Math Pi, 4, e7 (2016) · Zbl 1372.51003
[3] Chen, B.; Liu, H., Constructions of cyclic constant dimension codes, Des. Codes Cryptogr., 86, 6, 1267-1279 (2018) · Zbl 1387.94121 · doi:10.1007/s10623-017-0394-9
[4] Cossidente, A., Kurz, S., Marino, G., Pavese, F.: Combining subspace codes. Preprint 2019. arXiv: 1911.03387, (2019)
[5] Drudge K.: On the orbits of Singer groups and their subgroups. Electron. J. Combin. 9:#R15, (2002) · Zbl 0998.20003
[6] Elsenhans A.-S., Kohnert A.: Constructing network codes using Möbius transformations. Preprint 2010. https://math.uni-paderborn.de/fileadmin/mathematik/AG-Computeralgebra/Preprints-elsenhans/net_moebius_homepage.pdf.
[7] Etzion, T.; Vardy, A., Error-correcting codes in projective space, IEEE Trans. Inform. Theory, 57, 1165-1173 (2011) · Zbl 1366.94589 · doi:10.1109/TIT.2010.2095232
[8] Gluesing-Luerssen, H.; Morrison, K.; Troha, C., Cyclic orbit codes and stabilizer subfields, Adv. Math. Commun., 9, 2, 177-197 (2015) · Zbl 1361.94063 · doi:10.3934/amc.2015.9.177
[9] Gluesing-Luerssen, H.; Troha, C., Construction of subspace codes through linkage, Adv. Math. Commun., 10, 525-540 (2016) · Zbl 1348.94106 · doi:10.3934/amc.2016023
[10] Greferath, M.; Pavčević, M.; Silberstein, N.; Vázques-Castro, M., Network Coding and Subspace Designs (2018), New York: Springer, New York · Zbl 1388.94002 · doi:10.1007/978-3-319-70293-3
[11] Heinlein D., Kiermaier M., Kurz S., Wassermann A.: Tables of subspaces codes. Preprint 2016. arXiv: 1601.02864. · Zbl 1409.51010
[12] Heinlein, D.; Kurz, S., Coset construction for subspace codes, IEEE Trans. Inform. Theory, 63, 7651-7660 (2017) · Zbl 1390.94876 · doi:10.1109/TIT.2017.2753822
[13] Honold, T.; Kiermaier, M.; Kurz, S., Optimal binary subspace codes of length \(6\), constant dimension \(3\) and minimum subspace distance \(4\), Contemp. Math., 632, 157-176 (2015) · Zbl 1355.94094
[14] Koetter, R.; Kschischang, FR, Coding for errors and erasures in random network coding, IEEE Trans. Inform. Theory, 54, 3579-3591 (2008) · Zbl 1318.94111 · doi:10.1109/TIT.2008.926449
[15] Otal, K.; Özbudak, F., Cyclic subspace codes via subspace polynomials, Des. Codes Cryptogr., 85, 2, 191-204 (2017) · Zbl 1381.94131 · doi:10.1007/s10623-016-0297-1
[16] Roth, RM; Raviv, N.; Tamo, I., Construction of Sidon spaces with applications to coding, IEEE Trans. Inform. Theory, 64, 6, 4412-4422 (2018) · Zbl 1395.94237 · doi:10.1109/TIT.2017.2766178
[17] Silberstein, N.; Trautmann, A-L, Subspace codes based on graph matchings, Ferrers diagrams, and pending blocks, IEEE Trans. Inform. Theory, 61, 3937-3953 (2015) · Zbl 1359.94834 · doi:10.1109/TIT.2015.2435743
[18] Thomas, S., Designs over finite fields, Geom. Dedicata, 21, 237-242 (1987) · Zbl 0627.51013
[19] Trautmann, AL; Manganiello, F.; Braun, M.; Rosenthal, J., Cyclic orbit codes, IEEE Trans. Inform. Theory, 59, 11, 7386-7404 (2013) · Zbl 1364.94661 · doi:10.1109/TIT.2013.2274266
[20] Zhao, W.; Tang, X., A characterization of cyclic subspace codes via subspace polynomials, Finite Fields Appl., 57, 1-12 (2019) · Zbl 1468.94489 · doi:10.1016/j.ffa.2019.01.002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.