×

Vortices on closed surfaces. (English) Zbl 1402.76034

Chang, Dong Eui (ed.) et al., Geometry, mechanics, and dynamics. The legacy of Jerry Marsden. Selected papers presented at a focus program, Fields Institute for Research in Mathematical Sciences, Toronto, Canada, July 2012. New York, NY: Springer (ISBN 978-1-4939-2440-0/hbk; 978-1-4939-2441-7/ebook). Fields Institute Communications 73, 185-237 (2015).
Summary: It was recognized, since the seminal papers of V. I. Arnol’d [Ann. Inst. Fourier 16, No. 1, 319–361 (1966; Zbl 0148.45301)] and D. G. Ebin and J. Marsden [Ann. Math. (2) 92, 102–163 (1970; Zbl 0211.57401)], that Euler’s equations are the right reduction of the geodesic flow in the group of volume preserving diffeomorphisms. In 1983 J. Marsden and A. Weinstein [Physica D 7, 305–323 (1983; Zbl 0576.58008)] went one step further, pointing out that vorticity evolves on a coadjoint orbit on the dual of the infinite dimensional Lie algebra consisting of divergence free vector fields.
Here we pursue a suggestion of that paper, namely, to present an intrinsic Hamiltonian formulation for a special coadjoint orbit, which contains the motion of \(N\) point vortices on a closed two dimensional surface \(S\) with Riemannian metric \(g\). Our main results reformulate the problem on the plane, mainly C. C. Lin’s works [Proc. Natl. Acad. Sci. USA 27, 570–575, 575–577 (1941; Zbl 0063.03560)] about vortex motion on multiply connected planar domains. Our main tool is the Green function \(G_g(s,s_0)\) for the Laplace-Beltrami operator of \((S,g)\), interpreted as the stream function produced by a unit point vortex at \(s_ 0\in S\). Since the surface has no boundary, the vorticity distribution \(\omega\) has to satisfy the global condition \(\iint_S\omega\,\Omega=0\), where \(\Omega\) is the area form. Thus the Green function equation has to include a background of uniform counter-vorticity. As a consequence, vortex dynamics is affected by global geometry. Our formulation satisfies Kimura’s requirement [Y. Kimura, Proc. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci. 455, No. 1981, 245–259 (1999; Zbl 0966.53046)] that a vortex dipole describes geodesic motion. A single vortex drifts on the surface, with Hamiltonian given by Robin’s function, which in the case of topological spheres is related to the Gaussian curvature [J. Steiner, Duke Math. J. 129, No. 1, 63–86 (2005; Zbl 1144.53055)]. Results on numerical simulations on flat tori, the catenoid and in the triaxial ellipsoid are depicted. We present a number of questions, intending to connect point vortex streams on surfaces with questions from the mathematical mainstream. 219 References.
For the entire collection see [Zbl 1317.53004].

MSC:

76B47 Vortex flows for incompressible inviscid fluids
53D20 Momentum maps; symplectic reduction

Software:

SKPrime

References:

[1] Aref, H., Point vortex dynamics: a classical mathematics playground, J. Math. Phys., 48, 6, 065401 (2007) · Zbl 1144.81308
[2] Aref, H.; Newton, P. K.; Stremler, M. A.; Tokieda, T.; Vainchtein, D., Vortex crystals, Adv. Appl. Math., 39, 1-79 (2003)
[3] Arnold, V. I., Sur la geométrie differentielle des groupes de Lie de dimension infinie et ses applications a l’hydrodynamique des fluids parfaits, Ann. Inst. Grenoble, 16, 319-361 (1966) · Zbl 0148.45301
[4] (MR1612569) Arnold, V.I., Khesin, B.A.: Topological Methods in Hydrodynamics. Applied Mathematical Sciences, vol. 125. Springer, New York (1998) · Zbl 0902.76001
[5] Avelin, H.: Computations of automorphic functions on fuchsian groups. Ph.D. thesis, Uppsala University, Department of Mathematics (2007). http://www.urn:nbn:se:uu:diva-8247 · Zbl 1514.11001
[6] Avelin, H., Computations of Green’s function and its Fourier coefficients on Fuchsian groups, Exp. Math., 19, 3, 317-534 (2010) · Zbl 1267.11061
[7] Ball, W. W.R., A Short Account of the History of Mathematics (1940), New York: Dover, New York
[8] Bartosch, L.: Quantum dynamics of vortices in two-dimensional superfluids in the proximity to Mott insulators. Habilitationsschrift, Goethe Universität (2008). http://www.itp.uni-frankfurt.de/ lb/publicationsLB/BartoschHabilThesis.pdf
[9] Batchelor, G. K., On steady laminar flow with closed streamlines at large Reynolds number, J. Fluid Mech., 1, 177-190 (1956) · Zbl 0070.42004
[10] Belkin, M.; Niyogi, P., Towards a theoretical foundation for Laplacian-based manifold methods, J. Comput. Syst. Sci., 74, 8, 1289-1308 (2008) · Zbl 1157.68056
[11] (MR2504294) Belkin, M., Sun, J., Wang, Y.: Discrete Laplace operator on meshed surfaces. In: Computational Geometry (SCG’08), pp. 278-287. Association for Computing Machinery, New York (2008) · Zbl 1271.65030
[12] Berry, M., Three quantum obsessions, Nonlinearity, 21, 2, T19-T26 (2008) · Zbl 1192.81164
[13] Berry, M. V.; Keating, J. P., The Riemann zeros and eigenvalue asymptotics, SIAM Rev., 41, 236-266 (1999) · Zbl 0928.11036
[14] Boatto, S., Curvature perturbations and stability of a ring of vortices, Discrete Continuous Dyn. Syst. Ser. B, 10, 2-3, 349-375 (2008) · Zbl 1161.76010
[15] Boatto, S.; Cabral, H., Nonlinear stability of a latitudinal ring of point-vortices on a nonrotating sphere, SIAM J. Appl. Math., 64, 1, 216-230 (2003) · Zbl 1126.76309
[16] Boatto, S., Crowdy, D.: Point-vortex dynamics. In: Françoise, J.-P., Naber, G.L., Tsun, T.S. (eds.) Encyclopedia of Mathematical Physics. Elsevier, Amsterdam (2006). ISBN:97800-12-51 26663-3
[17] Boatto, S., Koiller, J.: Vortices on closed surfaces. arXiv: SG/0802.4313. Preprint · Zbl 1402.76034
[18] (MR2449799) Boatto, S., Simó, C.: Thomson’s hexagon: a case of bifurcation at infinity. Physica D 237, 2051-2057 (2008) (Proceedings of an International Conference. Euler Equations: 250 Years on (EE250), Aussois, 18-23 June 2007)
[19] Bobenko, A.; Pinkall, U., Discrete isothermic surfaces, J. Reine Angew. Math., 475, 187-208 (1996) · Zbl 0845.53005
[20] Bobenko, A.; Springborn, B., A discrete Laplace-Beltrami operator for simplicial surfaces, Discrete Comput. Geom., 38, 4, 740-756 (2007) · Zbl 1144.65011
[21] Bodenschatz, E.; Davidson, P. A.; Kaneda, Y.; Moffatt, K.; Sreenivasan, K. R., Eckert,: Prandtl and the Göttingen School, A Voyage Through Turbulence (2011), Cambridge: Cambridge University Press, Cambridge · Zbl 1241.76060
[22] Bödigheimer, C.; Cohen, F.; Taylor, L., On the homology of configuration spaces, Topology, 28, 1, 111-123 (1989) · Zbl 0689.55012
[23] Bödigheimer, C.; Cohen, F.; Milgram, R., Truncated symmetric products and configuration spaces, Math. Z., 214, 2, 179-216 (1993) · Zbl 0792.57011
[24] Bogomolov, V. A., The dynamics of vorticity on a sphere (Russian), Izv. Akad. Nauk SSSR Ser. Meh. Zidk. Gaza, 6, 57-65 (1977)
[25] Bolsinov, A. V., Fomenko (2004), Integrable Hamiltonian Systems. Geometry, Topology, Classification. Chapman & Hall/CRC, Boca Raton: A.T, Integrable Hamiltonian Systems. Geometry, Topology, Classification. Chapman & Hall/CRC, Boca Raton · Zbl 1056.37075
[26] Bolsinov, A.; Jovanovic, B.; Bokan, N.; Djoric, M.; Rakic, Z.; Fomenko, A. T.; Wess, J., Integrable geodesic flows on Riemannian manifolds: construction and obstructions, Contemporary Geometry and Related Topics, 57-103 (2004), River Edge: World Scientific Publishing, River Edge · Zbl 1154.37356
[27] Borisov, A. V.; Kilin, A. A., Stability of Thomson’s configurations of vortices on a sphere, Regul. Chaotic Dyn., 5, 2, 189-200 (2000) · Zbl 0967.76023
[28] Borisov, A. V.; Lebedev, V. G., Dynamics of three vortices on a plane and a sphere, II. General compact case. Regul. Chaotic Dyn., 3, 2, 99-114 (1998) · Zbl 0933.76016
[29] (MR1704984) Borisov, A.V., Lebedev, V.G.: Dynamics of three vortices on a plane and a sphere. III. Noncompact case. Problems of collapse and scattering. J. Moser at 70 (Russian). Regul. Chaotic Dyn. 3(4), 74-86 (1998) · Zbl 0958.76013
[30] Borisov, A. V.; Mamaev, I. S., Mathematical Methods in the Dynamics of Vortex Structures (in Russian) (2005), Moscow: Institute of Computer Science, Moscow · Zbl 1119.76001
[31] Borisov, A. V.; Pavlov, A. E., Dynamics and statics of vortices on a plane and a sphere - I, Regul. Chaotic Dyn., 3, 1, 28-38 (1998) · Zbl 0934.76014
[32] Borisov, A. V.; Mamaev, I. S.; Ramodanov, S. M., Dynamics of two interacting circular cylinders in perfect fluid, Discrete Contin. Dyn. Syst., 19, 2, 235-253 (2007) · Zbl 1130.37040
[33] Bourgade, P., Keating, J.P.: Quantum chaos, random matrix theory, and the Riemann ζ-function. Sèminaire Poincaré XIV, 115-153 (2010)
[34] Bujalance, E.; Costa, A., Orientation reversing automorphisms of Riemann surfaces, Illinois J. Math., 38, 4, 616-623 (1994) · Zbl 0807.30029
[35] Burton, G.; Lopes Filho, M.; Nussenzveig Lopes, H., Nonlinear Stability for steady vortex pairs, Comm. Math. Phys., 324, 445-463 (2013) · Zbl 1278.35188
[36] Byrnes, T., Wen, K., Yamamoto, Y.: Macroscopic quantum computation using Bose-Einstein condensates. Phys. Rev. A 85, 040306(R) (2012)
[37] Cabral, H.; Schmidt, D., Stability of relative equilibria in the problem of N + 1 vortices, SIAM J. Math. Anal., 31, 2, 231-250 (2000) · Zbl 0961.76014
[38] Cabral, H.; Meyer, K.; Schmidt, D., Stability and bifurcations for the N + 1 vortex motion on the sphere, Regul. Chaotic Dyn., 8, 3, 1-25 (2003)
[39] Castilho, C.; Machado, H., The N-vortex problem on a symmetric ellipsoid: a perturbation approach, J. Math. Phys., 49, 2, 022703 (2008) · Zbl 1153.81334
[40] Childress, S.: An Introduction to Theoretical Fluid Mechanics. Courant Lecture Notes, vol. 19. AMS, Providence (2000) · Zbl 1309.76001
[41] Chung, F.; Yau, S.-T., Discrete Green’s functions, J. Combin. Theory Ser. A, 91, 1-2, 191-214 (2000) · Zbl 0963.65120
[42] Constantin, P.; Titi, E., On the evolution of nearly circular vortex patches, Commun. Math. Phys., 119, 177-198 (1988) · Zbl 0673.76025
[43] Córdoba, D.; Fontelos, M.; Mancho, A.; Rodrigo, J., Evidence of singularities for a family of contour dynamics equations, Proc. Natl. Acad. Sci. USA, 102, 17, 5949-5952 (2005) · Zbl 1135.76315
[44] (MR2400392) Costa, A., Parlier, H.: A geometric characterization of orientation-reversing involutions. J. Lond. Math. Soc. (2) 77(2), 287-298 (2008) · Zbl 1154.30030
[45] Coste, A.; Dazord, P.; Weinstein, A., Groupoides symplectiques, Publ. Dép. Math. Univ. Claude Bernard Lyon I Nouvelle Sér. A, 2, 1-62 (1987) · Zbl 0668.58017
[46] Craig, T., Orthomorphic projection of an ellipsoid upon a sphere, Am. J. Math., 3, 2, 114-127 (1880) · JFM 12.0630.01
[47] (MR1973056) Crainic, M., Fernandes, R.L.: Integrability of Lie brackets. Ann. Math. (2) 157(2), 575-620 (2003) · Zbl 1037.22003
[48] Crainic, M.; Fernandes, R. L., Integrability of Poisson brackets, J. Differ. Geom., 66, 71-137 (2004) · Zbl 1066.53131
[49] Crainic, M., Marcut, I.: On the existence of symplectic realizations. arXiv:1009.2085v1 [math.DG] (2010) · Zbl 1244.53091
[50] Crowdy, D., Point vortex motion on the surface of a sphere with impenetrable boundaries, Phys. Fluids, 18, 036602 (2006) · Zbl 1185.76474
[51] Crowdy, D.; Marshall, J., The motion of a point vortex around multiple circular islands, Phys. Fluids, 17, 5, 056602 (2005) · Zbl 1187.76108
[52] Crowdy, D.; Marshall, J., Analytical formulae for the Kirchhoff-Routh path function in multiply connected domains, Proc. R. Soc. A, 461, 2477-2501 (2005) · Zbl 1186.76630
[53] Crowdy, D.; Marshall, J., Conformal mappings between canonical multiply connected domains, Comput. Methods Funct. Theory, 6, 1, 59-76 (2006) · Zbl 1101.30010
[54] Crowdy, D.; Marshall, J., Computing the Schottky-Klein prime function on the Schottky double of planar domains, Comput. Methods Funct. Theory, 7, 1, 293-308 (2007) · Zbl 1148.30023
[55] Crowdy, D.; Marshall, J., Green’s functions for Laplace’s equation in multiply connected domains, IMA J. Appl. Math., 72, 3, 278-301 (2007) · Zbl 1141.35306
[56] Crowdy, D.; Marshall, J., Uniformizing the boundaries of multiply connected quadrature domains using Fuchsian groups, Physica D, 235, 1-2, 82-89 (2007) · Zbl 1133.30011
[57] Crowdy, D.; Surana, A., Contour dynamics in complex domains, J. Fluid Mech., 593, 235-254 (2007) · Zbl 1128.76014
[58] Dai, J.; Luo, W.; Jin, M.; Zeng, W.; He, Y.; Yau, S. T.; Gu, X., Geometric accuracy analysis for discrete surface approximation, Comput. Aided Geom. Design, 24, 6, 323-338 (2007) · Zbl 1171.65360
[59] Desbrun, M.; Kanso, E.; Tong, Y.; Bobenko, A. I.; Schröder, P.; Sullivan, J. M.; Ziegler, G. M., Discrete differential forms for computational modeling, Discrete Differential Geometry. Oberwolfach Seminar, 287-324 (2008), Basel: Birkhauser, Basel · Zbl 1132.53004
[60] (MR0394451) do Carmo, M.: Differential Geometry of Curves and Surfaces. Prentice-Hall, Englewood Cliffs (1976) · Zbl 0326.53001
[61] Dong, S.; Kircher, S.; Garland, M., Harmonic functions for quadrilateral remeshing of arbitrary manifolds, Comput. Aided Geom. Design, 22, 5, 392-423 (2005) · Zbl 1205.65116
[62] Dritschel, D. G., The stability and energetics of co-rotating uniform vortices, J. Fluid Mech., 157, 95-134 (1985) · Zbl 0574.76026
[63] Ebbinghaus, H.; Peckhaus, V., Ernst Zermelo (2007), Springer, Berlin: An Approach to His Life and Work, Springer, Berlin · Zbl 1176.01011
[64] (MR0271984) Ebin, D.G., Marsden, J.: Groups of diffeomorphisms and the motion of an incompressible fluid. Ann. Math. Ser. 2 92(1), 102-163 (1970) · Zbl 0211.57401
[65] Enciso, A.; Peralta-Salas, D., Geometrical and topological aspects of electrostatics on Riemannian manifolds, J. Geom. Phys., 57, 1679-1696 (2007) · Zbl 1120.53045
[66] Engels, P., Viewpoint: observing the dance of a vortex-antivortex pair, step by step, Physics (APS), 3, 33 (2010)
[67] (MR2449768) Euler, L.: General principles of the motion of fluids (adaptation by U. Frisch of an English translation by T. E. Burton). Physica D 237(14-17), 1825-1839 (2008). Original article: Euler, L.: Principes généraux du mouvement des fluides. Mém. Acad. Sci. Berlin 11, 274-315 (1757). http://www.math.dartmouth.edu/ euler/pages/E226.html
[68] (MR2449769) Euler, L.: Principles of the motion of fluids (English adaptation by Walter Pauls). Physica D 237(14-17), 1840-1854 (2008). http://www.math.dartmouth.edu/ euler/ · Zbl 1143.76303
[69] (MR2449767) Eyink, G., Frisch, U., Moreau, R., Sobolevskii, A.: General Introduction (Proceedings of an International Conference. Euler Equations: 250 Years on (EE250), Aussois, 18-23 June 2007) Physica D 237(14-17), 11-15 (2008) · Zbl 1146.76301
[70] (MR1500278) Farina, A., Saut, J.-C. (eds.): Stationary and time dependent Gross-Pitaevskii equations. In: Proceedings of Wolfgang Pauli Institute Thematic, Vienna, 2006. Contemporary Mathematics, vol. 473. American Mathematical Society, Providence (2008) · Zbl 1149.35002
[71] Flucher, M., Gustafsson, B.: Vortex motion in two-dimensional hydro/-mechanics. Preprint (TRITA-MAT-1997-MA-02) (Partly published as Ch. 15 in M. Flucher: Variational Problems with Concentration, Birkhäuser, 1999). http://www.math.kth.se/ gbjorn/flucher.pdf
[72] (MR1259368) Fulton, W., MacPherson, R.: A compactification of configuration spaces. Ann. Math. (2) 139(1), 183-225 (1994) · Zbl 0820.14037
[73] Garsia, A. M.; Rodemich, E., An embedding of Riemann surfaces of genus one, Pac. J. Math., 11, 193-204 (1961) · Zbl 0133.03802
[74] Ghrist, R.; Berrick, A. J.; Cohen, F. R.; Hanbury, E.; Wong, Y.-L.; Wu, J., Configuration spaces, braids, and robotics, Braids. Lecture Notes Series, Institute for Mathematical Sciences, National University of Singapore, 263-304 (2010), Hackensack: World Scientific Publishing, Hackensack · Zbl 1213.57009
[75] (MR0458504) Gilkey, P.: The Index Theorem and the Heat Equation. (Notes by Jon Sacks) Mathematics Lecture Series, vol. 4. Publish or Perish Inc., Boston (1974) · Zbl 0287.58006
[76] Green, C. C.; Marshall, J. S., Green’s function for the Laplace-Beltrami operator on a toroidal surface, Proc. R. Soc. A, 469, 20120479 (2013) · Zbl 1371.30011
[77] Gromeka, I., Sobranie socinenii (Russian) (Collected works) (1952), Nauk SSSR, Moscow: Izdat. Akad, Nauk SSSR, Moscow
[78] (MR1736868) Grigor´yan, A.: Estimates of heat kernels on Riemannian manifolds. In: Brian Davies, E., Safarov, Y. (eds.) Spectral Theory and Geometry (Edinburgh, 1998). London Mathematical Society Lecture Note Series, vol. 273, pp. 140-225. Cambridge University Press, Cambridge (1999) · Zbl 0985.58007
[79] (MR2569498) Grigor´yan, A.: Heat Kernel and Analysis on Manifolds. AMS/IP Studies in Advanced Mathematics, vol. 47, American Mathematical Society/International Press, Providence/Boston (2009) · Zbl 1206.58008
[80] Gu, X.; Yau, S. T., Computing conformal structures of surfaces, Commun. Inform. Syst., 2, 2, 121-145 (2002) · Zbl 1092.14514
[81] (MR2439718) Gu, X., Yau, S.-T.: Computational Conformal Geometry. Advanced Lectures in Mathematics (ALM), vol. 3. International Press/Higher Education Press, Somerville/Beijing (2008) · Zbl 1144.65008
[82] Gutkin, E.; Newton, P., The method of images and Green’s function for spherical domains, J. Phys. A, 37, 50, 11989-12003 (2004) · Zbl 1067.78005
[83] Haas, A.; Susskind, P., The geometry of the hyperelliptic involution in genus two, Proc. Am. Math. Soc., 105, 1, 159-165 (1989) · Zbl 0672.30033
[84] Hally, D., Stability of streets of vortices on surfaces of revolution with a reflection symmetry, J. Math. Phys., 21, 1, 211-217 (1980) · Zbl 0446.76027
[85] Havelock, H., The stability of motion of rectilinear vortices in ring formation, Philos. Mag., 11, 617-633 (1931) · Zbl 0001.08102
[86] Hecht, T., Quantum computation with Bose-Einstein condensates (2004), Thesis: Technische Universität München, Max- Planck-Institut für Quantenoptik, Thesis
[87] Helmholtz, H.: Über integrale der hydrodynamischen gleichungen welche den Wirbelbewegungen entsprechen. Crelles J. 55, 25-55 (1858). http://www.dz-srv1.sub.uni-goettingen.de/sub/digbib/loader?did=D268537 · ERAM 055.1448cj
[88] Hernández-Garduño, A.; Lacomba, E., Collisions and regularization for the 3-vortex problem, J. Math. Fluid Mech., 9, 1, 75-86 (2007) · Zbl 1151.76403
[89] Hernández-Garduño, A., Lacomba, E.: Collisions of four point vortices in the plane. arXiv:math-ph/0609016. Preprint · Zbl 1151.76403
[90] Hildebrandt, K.; Polthier, K.; Wardetzky, M., On the convergence of metric and geometric properties of polyhedral surfaces, Geom. Dedicata, 123, 89-112 (2006) · Zbl 1125.52014
[91] Hiraoka, Y., Topological regularizations of the triple collision singularity in the 3-vortex problem, Nonlinearity, 21, 361-379 (2008) · Zbl 1172.76008
[92] (MR2704508) Hirani, A.: Discrete exterior calculus. Ph.D. thesis, Calthech (2003). http://www.resolver.caltech.edu/CaltechETD:etd-05202003-095403
[93] Holm, D. D.; Marsden, J. E.; Ratiu, T.; Weinstein, A., Nonlinear stability of fluid and plasma equilibria, Phys. Rep., 123, 1-2, 1-116 (1985) · Zbl 0717.76051
[94] Holm, D.; Marsden, J.; Ratiu, T.; Norbury, J.; Roulstone, I., The Euler-Poincaré equations in geophysical fluid dynamics, Large-Scale Atmosphere-Ocean Dynamics, 251-300 (2002), Cambridge: Cambridge University Press, Cambridge · Zbl 1089.86001
[95] (MR0641913) Holmes, P., Marsden, J.: Horseshoes in perturbations of Hamiltonian systems with two degrees of freedom. Commun. Math. Phys. 82(4), 523-544 (1981/1982) · Zbl 0489.58013
[96] Hwang, S.; Kim, S., Point vortices on hyperbolic sphere, J. Geom. Phys., 59, 4, 475-488 (2009) · Zbl 1166.76011
[97] Iftimie, D.; Lopes Filho, M. C.; Nussenzveig Lopes, H. J., On the large-time behavior of two-dimensional vortex dynamics, Physica D, 179, 3-4, 153-160 (2003) · Zbl 1092.76010
[98] Jin, M.; Wang, Y.; Gu, X.; Yau, S.-T., Optimal global conformal surface parameterization for visualization, Commun. Inform. Syst., 4, 2, 117-134 (2005) · Zbl 1092.14515
[99] Kidambi, R.; Newton, P. K., Motion of three point vortices on a sphere, Physica D, 116, 143-175 (1998) · Zbl 0962.76516
[100] Kidambi, R.; Newton, P. K., Point vortex motion on a sphere with solid boundaries, Phys. Fluids, 12, 3, 581-588 (2000) · Zbl 1149.76432
[101] Kim, S., Latitudinal point vortex rings on the spheroid, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 466, 1749-1768 (2010) · Zbl 1273.76068
[102] Kim, S., The motion of point vortex dipole on the ellipsoid of revolution, Bull. Korean Math. Soc., 47, 1, 73-79 (2010) · Zbl 1263.53006
[103] Kimura, Y., Vortex motion on surfaces with constant curvature, Proc. R. Soc. Lond. A, 455, 245-259 (1999) · Zbl 0966.53046
[104] Kimura, Y.; Okamoto, H., Vortex motion on a sphere, J. Phys. Soc. Jpn., 56, 4203-4206 (1987)
[105] Kirchhoff, G.: Vorlesungen über mathematische Physik, Mechanik, ch. XX. Teubner, Leipzig (1876). http://www.gallica.bnf.fr/ark:/12148/bpt6k99608d · JFM 08.0542.01
[106] Kirwan, F., The topology of reduced phase spaces of the motion of vortices on a sphere, Physica D, 30, 1-2, 99-123 (1988) · Zbl 0653.58009
[107] Klein, F.: Über Riemann’s Theorie der Algebraischen Functionen (1882). http://www.gutenberg.org (E-book 20313, 2007) · JFM 14.0358.01
[108] Klein, F.; Fricke, R.; Ostrowski, A., Über die Bildung von Wirbeln in reibungslosen Fl-ssigkeiten, Gesammelte Mathematische Abhandlungen, 710-713 (1923), Berlin: Springer, Berlin
[109] Koiller, J.; Boatto, S., Vortex pairs on surfaces. In: Etayo, F., Fioravanti, M., Santamar-a, R. (eds.) XVII International Fall Workshop on Geometry and Physics, AIP Conference Proceedings, 1130, 77-88 (2009) · Zbl 1375.76029
[110] Koiller, J.; Ragazzo, C.; Oliva, W., On the motion of two-dimensional vortices with mass, J. Nonlinear Sci., 4, 5, 375-418 (1994) · Zbl 0808.76015
[111] Kokotov, A.; Bobenko, A. I.; Klein, C., On the spectral theory of the Laplacian on compact polyhedral surfaces of arbitrary genus, Computational Approach to Riemann Surfaces. Lecture Notes in Mathematics, 227-253 (2011), New York: Springer, New York · Zbl 1221.58021
[112] Kokotov, A.: Compact polyhedral surfaces of an arbitrary genus and determinants of Laplacians. arXiv: 0906.0717v1. Preprint · Zbl 1129.58010
[113] Kontsevich, M.; Drouffe, J. M.; Zuber, J. B., Lyapunov exponents and Hodge theory, The Mathematical Beauty of Physics (Saclay, 1996). Advanced Series in Mathematical Physics, 318-332 (1997), River Edge: World Scientific Publishing, River Edge · Zbl 1058.37508
[114] Küchemann, D.: Report on the I.U.T.A.M. symposium on concentrated vortex motions in fluids. J. Fluid Mech. 21, 1-20 (1965) · Zbl 0149.44401
[115] Kurakin, L. G., On the stability of the regular n-sided polygon of vortices, Dokl. Phys., 39, 284-286 (1994) · Zbl 0832.76028
[116] Kurakin, L. G.; Ostrovskaya, I. V., Stability of the Thomson vortex polygon with evenly many vortices ourside a circular domain, Sib. Math. J., 51, 463-474 (2010) · Zbl 1211.76027
[117] Lacomba, E., Interaction of point sources and vortices for incompressible planar fluids, Qual. Theory Dyn. Syst., 8, 2, 371-379 (2009) · Zbl 1200.37058
[118] Laurent-Polz, F., Point vortices on a sphere: a case with opposite vorticities, Nonlinearity, 115, 143-171 (2002) · Zbl 0999.76030
[119] Laurent-Polz, F., Point vortices on a rotating sphere, Regul. Chaotic Dyn., 10, 1, 39-58 (2005) · Zbl 1120.76012
[120] Lewis, D.; Ratiu, T., Rotating n-gon/kn-gon vortex configurations, J. Nonlinear Sci., 6, 5, 385-414 (1996) · Zbl 0869.76012
[121] Lewis, D.; Ratiu, T.; Lacomba, E.; Llibre, J., Polygonal vortex configurations, New Trends for Hamiltonian Systems and Celestial Mechanics (Cocoyoc, 1994). Advanced Series in Nonlinear Dynamics, 249-262 (1996), River Edge: World Scientific Publishing, River Edge · Zbl 1138.76330
[122] Lewis, D.; Marsden, J.; Montgomery, R.; Ratiu, T., The Hamiltonian structure for dynamic free boundary problems, Physica D, 18, 1-3, 391-404 (1986) · Zbl 0638.58044
[123] Lewis, D.; Marsden, J.; Ratiu, T., Stability and bifurcation of a rotating planar liquid drop, J. Math. Phys., 28, 10, 2508-2515 (1987) · Zbl 0651.76021
[124] Lim, C.; Montaldi, J.; Roberts, M., Relative equilibria of point vortices on the sphere, Physica D, 148, 1-2, 97-135 (2001) · Zbl 1060.37006
[125] Lim, C.; Ding, X.; Nebus, J., Vortex Dynamics, Statistical Mechanics, and Planetary Atmospheres (2009), Hackensack: World Scientific Publishing, Hackensack · Zbl 1175.82001
[126] Lin, C. C., On the motion of vortices in two dimensions, I. Existence of the Kirchhoff-Routh function. Proc. Natl. Acad. Sci. USA, 27, 570-575 (1941) · Zbl 0063.03560
[127] Lin, C. C., On the motion of vortices in two dimensions, II. Some further investigations on the Kirchhoff-Routh function. Proc. Natl. Acad. Sci. USA, 27, 575-577 (1941) · Zbl 0063.03560
[128] (MR0008204) Lin, C.C.: On the Motion of Vortices in Two Dimensions. Applied Mathematics Series, vol. 5. University of Toronto Studies, University of Toronto Press, Toronto (1943) · Zbl 0063.03561
[129] Lin, C.-S., Wang, C.L.: A function theoretic view of the mean field equations on tori. In: Proceeding of the International Conference on Geometric Analysis (TIMS, Taipei 2007). International Press, Cambridge (2008)
[130] Lin, C. S.; Wang, C. L., Elliptic functions, Green functions and the mean field equations on tori. Ann. Math., 172, 2, 911-954 (2010) · Zbl 1207.35011
[131] Lui, L.; Gu, X.; Chan, T.; Yau, S.-T., Variational method on Riemann surfaces using conformal parameterization and its applications to image processing, Methods Appl. Anal., 15, 4, 513-538 (2008) · Zbl 1185.68807
[132] (MR1867882) Majda, A.J., Bertozzi, A.L.: Vorticity and Incompressible Flow. Cambridge Texts in Applied Mathematics, vol. 27. Cambridge University Press, Cambridge (2002) · Zbl 0983.76001
[133] (MR1245492) Marchioro, C., Pulvirenti, M.: Mathematical Theory of Incompressible Nonviscous Fluids. Applied Mathematical Sciences, vol. 96. Springer, New York (1994) · Zbl 0789.76002
[134] Marcus, P. S., Jupiter’s great red spot and other vortices, Annu. Rev. Astron. Astrophys., 31, 523-569 (1993)
[135] Marsden, J. E.; Weinstein, A., Coadjoint orbits, vortices, and Clebsch variables for incompressible fluids, Physica D, 7, 305-323 (1983) · Zbl 0576.58008
[136] Marsden, J. E.; Ratiu, T.; Raugel, G., Équations d’Euler dans une coque sphérique mince, C. R. Acad. Sci. Paris Ser. I Math., 321, 1201-1206 (1995) · Zbl 0837.76077
[137] Marsden, J. E.; Pekarsky, S.; Shkoller, S., Stability of relative equilibria of point vortices on a sphere and symplectic integrators, Il Nuovo Cimento, 22, 6, 793-802 (1999)
[138] Marsden, J. E.; Ratiu, T.; Raugel, G.; Fiedler, B.; Gröoger, K.; Sprekels, J., The Euler equations on thin domains, International Conference on Differential Equations, Berlin, 1999, 1198-1203 (2000), River Edge: World Scientific Publishing, River Edge · Zbl 0993.76008
[139] Marsden, J. E.; Ratiu, T.; Shkoller, S., The geometry and analysis of the averaged Euler equations and a new diffeomorphism group, Geom. Funct. Anal., 10, 3, 582-599 (2000) · Zbl 0979.58004
[140] Meleshko, V.; Aref, H., A bibliography of vortex dynamics 1858-1956, Adv. Appl. Mech., 41, 197-292 (2007)
[141] Melnikov, V. K., On the stability of a center for time-periodic perturbations (Russian), Trudy Moskov. Mat., 12, 3-52 (1963) · Zbl 0135.31001
[142] Mercat, C.; Papadopoulos, A., Discrete Riemann surfaces, Handbook of Teichmüller Theory, Volume I. IRMA Lectures in Mathematics and Theoretical Physics, 541-575 (2007), Zürich: European Mathematical Society, Zürich · Zbl 1136.30315
[143] Meyer, M.; Desbrun, M.; Schröder, P.; Barr, A.; Hege, H.; Polthier, K., Discrete differential-geometry operators for triangulated 2-manifolds, Visualization and Mathematics III. Mathematics and Visualization, 35-57 (2003), Berlin: Springer, Berlin · Zbl 1069.53004
[144] Montaldi, J.; Soulière, A.; Tokieda, T., Vortex dynamics on a cylinder, SIAM J. Appl. Dyn. Syst., 2, 3, 417-430 (2003) · Zbl 1088.37026
[145] Muller, B., Kartenprojektionen des dreiachsigen ellipsoids (1991), Geodatisches Institut, University of Stuttgart: Diplomarbeit, Geodatisches Institut, University of Stuttgart
[146] Nag, S., Riemann surfaces and their Jacobians: a toolkit, Indian J. Pure Appl. Math., 24, 12, 729-745 (1993) · Zbl 0817.14009
[147] Neely, T.: Formation, dynamics and decay of quantized vortices in Bose-Einstein condensates: elements of quantum turbulence. Ph.D. thesis, University of Arizona (2010)
[148] Neely, T.; Samson, E.; Bradley, A.; Davis, M.; Anderson, B., Observation of vortex dipoles in an oblate Bose-Einstein condensate, Phys. Rev. Lett., 104, 160401 (2010)
[149] Neishtadt, A. I.; Craig, W., Averaging method and adiabatic invariants, Hamiltonian Dynamical Systems and Applications. NATO Science for Peace and Security Series B. Physics and Biophysics, 53-66 (2008), Dordrecht: Springer, Dordrecht · Zbl 1135.70006
[150] (MR1831715) Newton, P.: The N-Vortex Problem: Analytical Techniques. Applied Mathematical Sciences, vol. 145. Springer, New York (2001) · Zbl 0981.76002
[151] Newton, P.; Sakajo, T., Point vortex equilibria on the sphere via Brownian ratchets, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 465, 2102, 437-455 (2009) · Zbl 1186.76632
[152] Newton, P.; Shokraneh, H., Interacting dipole pairs on a rotating sphere, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 464, 2094, 1525-1541 (2008)
[153] Okikiolu, K., A negative mass theorem for the 2-torus, Commun. Math. Phys., 284, 3, 775-802 (2008) · Zbl 1167.53038
[154] Okikiolu, K., Extremals for logarithmic Hardy-Littlewood-Sobolev inequalities on compact manifold, Geom. Funct. Anal., 17, 5, 1655-1684 (2008) · Zbl 1140.58003
[155] Okikiolu, K., A negative mass theorem for surfaces of positive genus, Commun. Math. Phys., 290, 3, 1025-1031 (2009) · Zbl 1184.53046
[156] Parlier, H., Fixed point free involutions on Riemann surfaces, Israel J. Math., 166, 297-311 (2008) · Zbl 1157.30031
[157] Patrick, G. W., Dynamics of perturbed relative equilibria of point vortices on the sphere or plane, J. Nonlinear Sci., 10, 401-415 (2000) · Zbl 0964.37037
[158] Pekarsky, S.; Marsden, J. E., Point vortices on a sphere: stability of relative equilibria, J. Math. Phys., 39, 5894-5907 (1998) · Zbl 0927.37013
[159] Pitaevskii, L. P.; Stringari, S., Bose-Einstein Condensation (2003), Oxford: Clarendon Press, Oxford · Zbl 1110.82002
[160] Polthier, K.; Preuss, E.; Hege, H. C.; Polthier, K., Identifying vector fields singularities using a discrete hodge decomposition, Visualization and Mathematics III (2002), New York: Springer, New York
[161] Polthier, K.; Schmies, M.; Hege, H.; Polthier, K., Straightest geodesics on polyhedral surfaces, Mathematical Visualization (Berlin, 1997), 135-150 (1998), Berlin: Springer, Berlin · Zbl 0940.68153
[162] Polvani, L. M.; Dritschel, D. G., Wave and vortex dynamics on the surface of a sphere, J. Fluid Mech., 255, 35-64 (1993) · Zbl 0793.76022
[163] Prandtl, L.: Über Flüssigkeitsbewegung Bei Sehr Kleiner Reibung. Verhandlungen des dritten Internationalen mathematikerkongresses in Heidelberg (International Mathematical Congress, Heidelberg), pp. 484-491 (1904); Gesammelte Abhandlungen II, pp. 575-584 (1961) (English translation available from http://www.digital.library.unt.edu/ark:/67531/metadc65275/)
[164] Pullin, D., Contour dynamics methods, Annu. Rev. Fluid Mech., 24, 89-115 (1992) · Zbl 0743.76021
[165] Qing, J., Ginzburg-Landau vortices and Mandelstam diagrams, Pac. J. Math., 194, 1, 189-197 (2000) · Zbl 1013.58016
[166] Ramodanov, S. M.; Borisov, A. V., On the motion of two mass vortices in perfect fluid, IUTAM Symposium on Hamiltonian Dynamics, Vortex Structures, Turbulence. IUTAM Book Series, 459-468 (2008), Dordrecht: Springer, Dordrecht · Zbl 1207.76038
[167] Rasor, S. E., The geodesic lines on the helicoid, Ann. Math., 11, 2, 77-85 (1910) · JFM 41.0720.01
[168] (arXiv:1306.5054) Raymond, N., Ngoc, S.V.: Geometry and Spectrum in 2D Magnetic Wells (to appear in Annales de l’Institut Fourier) · Zbl 1327.81207
[169] Regis, A.: Dinâmica de vórtices pontuais sobre um elipsóide triaxial (portuguese) (Dynamics of point vortices on the triaxial ellipsoid). Ph.D. thesis, Departamento de Matemática da Universidade Federal de Pernambuco (2011)
[170] Rhines, P. B.; Young, W. R., Homogenization of potential vorticity in planetary gyres, J. Fluid Mech., 122, 347-367 (1982) · Zbl 0497.76032
[171] Riemann, B., Theorie der Abel’schen Functionen, J. Reine Angew. Math., 54, 101-155 (1857) · ERAM 054.1427cj
[172] Riemann, B., Riemanniana Selecta (Spanish; Edited and with an introductory study by José Ferreirós) (2000), CSIC, Madrid: Clásicos del Pensamiento, CSIC, Madrid · Zbl 1011.01016
[173] (MR2121437) Riemann, B.: Collected papers (Translated from the 1892 German edition by R. Baker, C. Christenson, H. Orde). Kendrick Press, Heber City (2004) · Zbl 1101.01013
[174] Rindler-Daller, T.; Shapiro, P. R., Angular momentum and vortex formation in Bose-Einstein-condensed cold dark matter haloes, Mon. Not. R. Astron. Soc., 422, 135-161 (2012)
[175] Roberts, G. E., Stability of relative equilibria in the planar N-vortex problem, SIAM J. Appl. Dyn. Syst., 12, 2, 1114-1134 (2013) · Zbl 1282.70022
[176] Robinson, C.; Saari, D.; Xia, Z., Melnikov method for autonomous Hamiltonians, Hamiltonian Dynamics and Celestial Mechanics (Seattle, WA, 1995). Contemporary Mathematics, 45-53 (1996), Providence: American Mathematical Society, Providence · Zbl 0859.34030
[177] Rosenberg, S., The Laplacian on a Riemannian Manifold (1997), Cambridge: Cambridge University Press, Cambridge · Zbl 0868.58074
[178] Rowley, C.W., Marsden, J.E.: Variational integrators for degenerate Lagrangians, with application to point vortices. In: Proceedings of the 41st IEEE Conference on Decision and Control. Proceedings IEEE Conference on Decision and Control, pp. 1521-1527 (2002)
[179] Saffman, P. G., Vortex Dynamics (1992), Cambridge Monograph on Mechanics and Applied Mathematics: Cambridge University Press, Cambridge, Cambridge Monograph on Mechanics and Applied Mathematics · Zbl 0777.76004
[180] Schering, E., Über die conforme abbildung des ellipsoids auf der ebene, ch. III (1902), Gesammelte Mathematische Werke. Mayer and Muller, Berlin: In, Gesammelte Mathematische Werke. Mayer and Muller, Berlin · JFM 33.0030.01
[181] Seo, S.; Chung, M. K.; Vorperian, H. K., Heat kernel smoothing using laplace-beltrami eigenfunctions. In: Jiang, T., Navab, N., Pluim, J., Viergever, M. (eds.) Medical Image Computing and Computer-Assisted Intervention - MICCAI 2010. Lecture Notes in Computer Science, Springer-Verlag, Heidelberg, Germany, 6363, 505-512 (2010)
[182] Shadden, S. C.; Dabiri, J. O.; Marsden, J. E., Lagrangian analysis of fluid transport in empirical vortex ring flows, Phys. Fluids, 18, 4, 047105 (2006) · Zbl 1185.76700
[183] Shadden, S. C.; Katija, K.; Rosenfeld, M.; Marsden, J. E.; Dabiri, J. O., Transport and stirring induced by vortex formation, J. Fluid Mech., 593, 315-332 (2007) · Zbl 1151.76350
[184] Shashikanth, B. N.; Marsden, J. E.; Burdick, J. W.; Kelly, S. D., The Hamiltonian structure of a two-dimensional rigid circular cylinder interacting dynamically with N point vortices, Phys. Fluids, 14, 3, 1214-1227 (2002) · Zbl 1185.76481
[185] Shashikanth, B. N.; Sheshmani, A.; Kelly, S. D.; Marsden, J. E., Hamiltonian structure for a neutrally buoyant rigid body interacting with N vortex rings of arbitrary shape: the case of arbitrary smooth body shape, Theor. Comput. Fluid Dyn., 22, 1, 37-64 (2008) · Zbl 1161.76447
[186] Sideris, T.; Vega, L., Stability in L^1 of circular vortex patches, Proc. Am. Math. Soc., 137, 4199-4202 (2009) · Zbl 1181.35201
[187] Smets, D.; Bethuel, F.; Orlandi, G., Quantization and motion law for Ginzburg-Landau vortices, Arch. Ration. Mech. Anal., 183, 2, 315-370 (2007) · Zbl 1105.76062
[188] Soulière, A.; Tokieda, T., Periodic motions of vortices on surfaces with symmetry, J. Fluid Mech., 460, 83-92 (2002) · Zbl 1016.76013
[189] Spirn, D., Vortex motion law for the Schr-dinger-Ginzburg-Landau equations, SIAM J. Math. Anal., 34, 6, 1435-1476 (2003) · Zbl 1055.35118
[190] Springer, G., Introduction to Riemann Surfaces (1957), Reading: Addison-Wesley Publishing Company, Reading · Zbl 0078.06602
[191] Steiner, J., A geometrical mass and its extremal properties for metrics on S^2, Duke Math. J., 129, 1, 63-86 (2005) · Zbl 1144.53055
[192] Stremler, M. A., On relative equilibria and integrable dynamics of point vortices in periodic domains, Theor. Comput. Fluid Dyn., 24, 25-37 (2010) · Zbl 1191.76032
[193] Stremler, M. A.; Aref, H., Motion of three point vortices in a periodic parallelogram, J. Fluid Mech., 392, 101-128 (1999) · Zbl 0954.76008
[194] Struik, D. J., Lectures on Classical Differential Geometry (reprint of the second edition) (1988), New York: Dover Publications, New York · Zbl 0697.53002
[195] Surana, A.; Crowdy, D., Vortex dynamics in complex domains on a spherical surface, J. Comput. Phys., 227, 12, 6058-6070 (2008) · Zbl 1142.76043
[196] Sushch, V., Green function for a two-dimensional discrete Laplace-Beltrami operator, Cubo, 10, 2, 47-59 (2008) · Zbl 1159.39010
[197] Tang, Y., Nonlinear stability of vortex patches, Trans. Am. Math. Soc., 304, 2, 617-638 (1987) · Zbl 0636.76019
[198] Tazzioli, R., Riemann: Le géométre de la Nature (2002), Pour la Science, Paris: Les gènies de la Science, Pour la Science, Paris
[199] Thomson, J. J., Electricity and Matter (1904), Westminster: Westmister Archibald Conatable, Westminster · JFM 35.0914.08
[200] Tronin, K. G., Absolute choreographies of point vortices on a sphere, Regul. Chaotic Dyn., 11, 1, 123-130 (2006) · Zbl 1135.76317
[201] Turner, A. M.; Vitelli, V.; Nelson, D. R., Vortices on curved surfaces, Rev. Mod. Phys., 82, 1301-1348 (2010)
[202] Vallis, G. K., Atmospheric and Oceanic Fluid Dynamics (2006), Cambridge: Cambridge University Press, Cambridge
[203] van Wijngaarden, L., Prandtl-Batchelor flows revisited, Fluid Dyn. Res., 39, 267-278 (2007) · Zbl 1167.76013
[204] Vankerschaver, J.; Kanso, E.; Marsden, J. E., The geometry and dynamics of interacting rigid bodies and point vortices, J. Geom. Mech., 1, 2, 223-266 (2009) · Zbl 1191.53055
[205] Viglioni, H.: Dinâmica de Vórtices em Superfícies com Aplicações ao Problema de dois Vórtices no Toro Plano (Portuguese) (Dynamics of vortices on surfaces with aplications to the flat tori). Ph.D. thesis, Departamento de Matemática Aplicada da Universidade de São Paulo (2013)
[206] Wan, Y. H.; Marsden, J. E., On the nonlinear stability of circular vortex patches, Fluids and Plasmas: Geometry and Dynamics. Contemporary Mathematics, vol. 28, 215-220 (1984), Providence: American Mathematical Society, Providence · Zbl 0552.76027
[207] Wan, Y. H.; Pulvirenti, M., Nonlinear stability of circular vortex patches, Commun. Math. Phys., 99, 3, 435-450 (1985) · Zbl 0584.76062
[208] Wan, Y.H., Marsden, J.E., Ratiu, T.S., Weinstein, A.: Nonlinear Stability of Circular Vortex Patches. Center for Pure and Applied Mathematics, vol. 162. University of California, Berkeley (1983)
[209] Wayne, C. E., Vortices and two dimensional fluid motion, Notices AMS, 58, 1, 10-19 (2011) · Zbl 1372.76002
[210] Weinstein, A., The local structure of Poisson manifolds, J. Differ. Geom., 18, 523-557 (1983) · Zbl 0524.58011
[211] Weyl, H., The Concept of a Riemann Surface (1964), Reading: Addison-Wesley, Reading
[212] (MR0956468) Wiggins, S.: Global Bifurcations and Chaos: Analytical Methods. Applied Mathematical Sciences, vol. 73. Springer, New York (1988) · Zbl 0661.58001
[213] Xu, G., Convergence of discrete Laplace-Beltrami operators over surfaces, Comput. Math. Appl., 48, 3-4, 347-360 (2004) · Zbl 1062.39019
[214] Xu, G., Discrete Laplace-Beltrami operators and their convergence, Comput. Aided Geom. Design, 21, 8, 767-784 (2004) · Zbl 1069.58500
[215] Yamagata, T.; Matsuura, T., A generalization of Prandtl-Batchelor theorem for planetary fluid flows in a closed geostrophic contour, Meteorol. Soc. Jpn. J., 59, 615-619 (1981)
[216] Zabusky, N.; Norman, J.; Hughes, M.; Roberts, K., Contour dynamics for the Euler equations in two dimensions, J. Comput. Phys., 135, 2, 217-226 (1997) · Zbl 0938.76076
[217] Zeng, W.; Li, X.; Yau, S. T.; Gu, X., Conformal spherical parametrization for high genus surfaces, Commun. Inform. Syst., 7, 3, 273-286 (2007) · Zbl 1171.30311
[218] Zeng, W.; Lui, L. M.; Gu, X.; Yau, S.-T., Shape analysis by conformal modules, Methods Appl. Anal., 15, 4, 539-555 (2008) · Zbl 1184.30035
[219] Zermelo, E., Hydrodynamische Untersuchungen über die Wirbelbewegungen in einer Kugelfläche, Z. Math. Phys., 47, 201-237 (1902) · JFM 33.0781.01
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.