×

Point vortex equilibria on the sphere via Brownian ratchets. (English) Zbl 1186.76632

Summary: We describe a Brownian ratchet scheme that we use to calculate relative equilibrium configurations of \(N\) point vortices of mixed strength on the surface of a unit sphere. We formulate it as a problem in linear algebra, \(A\Gamma =0\), where \(A\) is a \(N(N - 1)/2\times N\) non-normal configuration matrix obtained by requiring that all inter-vortical distances on the sphere remain constant and \(\Gamma \in \mathbb{R}^N\) is the (unit) vector of vortex strengths that must lie in the null space of \(A\). Existence of an equilibrium is expressed by the condition \(\det(A^{T}A)=0\), while uniqueness follows if \(\mathrm{rank}(A)=N - 1\). The singular value decomposition of \(A\) is used to calculate an optimal basis set for the null space, yielding all values of the vortex strengths for which the configuration is an equilibrium and allowing us to decompose the equilibrium configuration into basis components. To home in on an equilibrium, we allow the point vortices to undergo a random walk on the sphere and, after each step, we compute the smallest singular value of the configuration matrix, keeping the new arrangement only if it decreases. When the smallest singular value drops below a predetermined convergence threshold, the existence criterion is satisfied and an equilibrium configuration is achieved. We then find a basis set for the null space of \(A\), and hence the vortex strengths, by calculating the right singular vectors corresponding to the singular values that are zero. We show a gallery of examples of equilibria with one-dimensional null spaces obtained by this method. Then, using an unbiased ensemble of 1000 relative equilibria for each value \(N=4\rightarrow 10\), we discuss some general features of the statistically averaged quantities, such as the Shannon entropy (using all of the normalized singular values) and Frobenius norm, centre-of-vorticity vector and Hamiltonian energy.

MSC:

76B47 Vortex flows for incompressible inviscid fluids
82C99 Time-dependent statistical mechanics (dynamic and nonequilibrium)
94A17 Measures of information, entropy
Full Text: DOI

References:

[1] PHYS REV E 71 pp 047703– (2005) · doi:10.1103/PhysRevE.71.047703
[2] PHYS REV E 73 pp 036108– (2006) · doi:10.1103/PhysRevE.73.036108
[3] Physical Review Letters 78 pp 2681– (1997) · doi:10.1103/PhysRevLett.78.2681
[4] ADV APPL MECH 39 pp 1– (2003) · doi:10.1016/S0065-2156(02)39001-X
[5] Nature; Physical Science (London) 392 pp 769– (1998) · doi:10.1038/33827
[6] J PHYS A MATH GEN 27 pp 2579– (1994) · Zbl 0839.70009 · doi:10.1088/0305-4470/27/7/032
[7] J THEOR PROB 10 pp 429– (1997) · Zbl 0892.60084 · doi:10.1023/A:1022869817770
[8] REGULAR CHAOTIC DYN 8 pp 259– (2003) · Zbl 1150.76348 · doi:10.1070/RD2003v008n03ABEH000243
[9] PHYS REV B 20 pp 1886– (1979) · doi:10.1103/PhysRevB.20.1886
[10] Acta Crystallographica, Section A: Foundations of Crystallography 48 pp 60– (1992) · doi:10.1107/S0108767391009133
[11] J PHYS A MATH GEN 24 pp 1369L– (1991) · doi:10.1088/0305-4470/24/23/008
[12] J PHYS A MATH GEN 25 pp 2473– (1992) · doi:10.1088/0305-4470/25/9/020
[13] Jamaloodeen, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 462 (2075) pp 3277– (2006) · Zbl 1149.76615 · doi:10.1098/rspa.2006.1731
[14] J R STATIST SOC B 36 pp 365– (1974)
[15] Physica. D 116 pp 143– (1998) · Zbl 0962.76516 · doi:10.1016/S0167-2789(97)00236-4
[16] 15 pp 143– (2002) · Zbl 0999.76030 · doi:10.1088/0951-7715/15/1/307
[17] Physica. D 148 pp 97– (2001) · doi:10.1016/S0167-2789(00)00167-6
[18] Newton, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 463 (2082) pp 1525– (2007) · Zbl 1347.76014 · doi:10.1098/rspa.2007.1832
[19] Newton, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 462 (2065) pp 149– (2006) · Zbl 1149.76617 · doi:10.1098/rspa.2005.1566
[20] PHYS REPORTS 361 pp 57– (2002) · Zbl 1001.82097 · doi:10.1016/S0370-1573(01)00081-3
[21] PHIL TRANS R SOC A 252 pp 317– (1960) · Zbl 0094.31901 · doi:10.1098/rsta.1960.0008
[22] MATH INTELL 19 pp 5– (1997) · doi:10.1007/BF03024406
[23] BELL SYS TECH J 27 pp 379– (1948) · Zbl 1154.94303 · doi:10.1002/j.1538-7305.1948.tb01338.x
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.