×

Toward a mathematical theory of Keller-Segel models of pattern formation in biological tissues. (English) Zbl 1326.35397

The paper is an overview supplemented with a critical analysis on the qualitative study of mathematical problems for the original Keller-Segel system of chemotaxis as well as on a variety of models derived with the aim of improving its consistency with biological reality. The first part discusses models including the classical Keller-Segel system, systems with a logistic growth term, chemotaxis with signal-dependent sensitivities, nonlinear cell diffusion model and chemotaxis-fluid systems. The second part is devoted to the qualitative analysis of analytic questions such as the existence of solutions, their asymptotic behavior and blow-up. The third part deals with the derivation of macroscopic models by means of kinetic theory methods. Several open problems are formulated as suggestions for future research activities.

MSC:

35Q92 PDEs in connection with biology, chemistry and other natural sciences
92C17 Cell movement (chemotaxis, etc.)
35K55 Nonlinear parabolic equations
35B40 Asymptotic behavior of solutions to PDEs
35B44 Blow-up in context of PDEs
35Q35 PDEs in connection with fluid mechanics
Full Text: DOI

References:

[1] Aida, M., J. London Math. Soc., 74, 453, 2006
[2] Alber, M., Phys. Rev. Lett., 99, 168102, 2007
[3] Allen, B.; Nowak, M., EMS Surv. Math. Sci., 1, 113, 2014 · Zbl 1303.91040
[4] Anderson, A. R. A.; Chaplain, M. A. J., Bull. Math. Biol., 60, 857, 1998 · Zbl 0923.92011
[5] Anderson, A. R. A., J. Theoret. Medicine, 2, 129, 2000 · Zbl 0947.92012
[6] Andreu, F.; Caselles, V.; Mazón, J. M., Arch. Rational Mech. Anal., 176, 415, 2005 · Zbl 1112.35111
[7] Andreu, F., Arch. Rational Mech. Anal., 182, 269, 2006 · Zbl 1142.35455
[8] Banasiak, J.; Lachowicz, M., Methods of Small Parameter in Mathematical Bio-logy, 2014, Birkhäuser · Zbl 1309.92012
[9] Bellomo, N.; Bellouquid, A., Nonlinear Anal. Hybrid Syst., 3, 215, 2009 · Zbl 1184.93071
[10] Bellomo, N.; Bellouquid, A., Front. Sci. Eng., 4, 1, 2014
[11] Bellomo, N.; Bellouquid, A., Math. Mech. Solids, 20, 268, 2015 · Zbl 1327.76175
[12] Bellomo, N.Bellouquid, A., Commun. Math. Sci.13(39), (2015).
[13] Bellomo, N., Math. Models Methods Appl. Sci., 17, 1675, 2007 · Zbl 1135.92009
[14] Bellomo, N., Math. Models Methods Appl. Sci., 20, 1179, 2010 · Zbl 1402.92065
[15] Bellomo, N., Math. Comput. Model., 51, 441, 2010 · Zbl 1190.92001
[16] Bellomo, N., Math. Models Methods Appl. Sci., 22, 1130001, 2012 · Zbl 1328.92023
[17] Bellomo, N., Discrete Contin. Dynam. Syst. Ser. B, 18, 847, 2013
[18] Bellomo, N., Discrete Contin. Dynam. Syst. Ser. B, 19, 1869, 2014
[19] Bellomo, N.; Knopoff, D.; Soler, J., Math. Models Methods Appl. Sci., 23, 1861, 2013 · Zbl 1315.35137
[20] Bellomo, N.; Piccoli, B.; Tosin, A., Math. Models Methods Appl. Sci., 22, 1230004, 2012 · Zbl 1252.35192
[21] Bellouquid, A., Math. Models Methods Appl. Sci., 14, 853, 2004 · Zbl 1076.76066
[22] Bellouquid, A.; De Angelis, E., Nonlinear Anal. Real World Appl., 12, 1101, 2011
[23] Bellouquid, A.; De Angelis, E.; Knopoff, D., Math. Models Methods Appl. Sci., 23, 949, 2013 · Zbl 1303.92040
[24] Bellouquid, A.; Delitala, M., Mathematical Modeling of Complex Biological Systems. A Kinetic Theory Approach, 2006, Birkhäuser · Zbl 1178.92002
[25] Bellouquid, A.; Delitala, M., Math. Models Methods Appl. Sci., 15, 1639, 2005 · Zbl 1093.82016
[26] Biler, P., Adv. Math. Sci. Appl., 9, 347, 1999 · Zbl 0941.35009
[27] Biler, P.; Corrias, L.; Dolbeault, J., J. Math. Biol., 63, 1, 2011 · Zbl 1230.92011
[28] Biler, P.; Hebisch, W.; Nadzieja, T., Nonlinear Anal., 23, 1189, 1994 · Zbl 0814.35054
[29] Biler, P.; Karch, G., J. Evol. Equations, 10, 247, 2010 · Zbl 1239.35177
[30] Blanchet, A.; Carrillo, J. A.; Laurençot, Ph., Calc. Var. Partial Differential Equations, 35, 133, 2009 · Zbl 1172.35035
[31] Brenier, Y., Optimal Transportation and Applications, 1813 (Springer, 2003) pp. 91-122.
[32] Brenier, Y., J. Nonlinear Sci., 19, 547, 2009 · Zbl 1177.49064
[33] Borsche, R., Math. Models Methods Appl. Sci., 24, 221, 2014 · Zbl 1321.92042
[34] Borsche, R., Math. Models Methods Appl. Sci., 24, 359, 2014 · Zbl 1279.90035
[35] Burczak, J.; Cieślak, T.; Morales Rodrigo, C., Nonlinear Anal., 75, 5215, 2012
[36] Burger, M.; Di Francesco, M.; Dolak-Struss, Y., SIAM J. Math. Anal., 38, 1288, 2006 · Zbl 1114.92008
[37] Calvez, V.; Carrillo, J. A., J. Math. Pures Appl., 86, 155, 2006 · Zbl 1116.35057
[38] Cao, X., J. Math. Anal. Appl., 412, 181, 2014 · Zbl 1364.35123
[39] Cao, X., Discrete Contin. Dynam. Syst. Ser. A, 35, 1891, 2015 · Zbl 1515.35047
[40] X. Cao, Boundedness in a three-dimensional chemotaxis-haptotaxis system, preprint.
[41] Cao, X.; Ishida, S., Nonlinearity, 27, 1899, 2014 · Zbl 1301.35056
[42] Cao, X.; Zheng, S., Math. Models Methods Appl. Sci., 37, 2326, 2014 · Zbl 1370.92029
[43] Cerreti, F., Math. Models Methods Appl. Sci., 21, 825, 2011 · Zbl 1221.35088
[44] Chae, M.; Kang, K.; Lee, J., Discrete Contin. Dynam. Syst. Ser. A, 33, 2271, 2013 · Zbl 1277.35276
[45] Chae, M.; Kang, K.; Lee, J., Comm. Partial Differential Equations, 39, 1205, 2014 · Zbl 1304.35481
[46] Chalub, F. A., Math. Models Methods Appl. Sci., 16, 1173, 2006 · Zbl 1094.92009
[47] Chalub, F. A.; Kang, K., Nonlinear Anal., 64, 686, 2006 · Zbl 1103.35046
[48] Chalub, F. A., Monatsh. Math., 142, 123, 2004
[49] Chaplain, M. A. J.; Lolas, G., Math. Models Methods Appl. Sci., 18, 1685, 2005
[50] Chaplain, M. A. J.; Lolas, G., Netw. Heterog. Media, 1, 399, 2006 · Zbl 1108.92023
[51] Chen, K. C.; Ford, R. M.; Cummings, P. T., SIAM J. Appl. Math., 59, 35, 1999 · Zbl 0918.60023
[52] Chertock, A., J. Fluid Mech., 694, 155, 2012 · Zbl 1250.76191
[53] Chertock, A., Kinet. Relat. Models, 5, 51, 2012 · Zbl 1398.92033
[54] Cieślak, T.; Laurençot, Ph., Ann. Inst. H. Poincaré Anal. Non Linéaire, 27, 437, 2010 · Zbl 1270.35377
[55] Cieślak, T.; Stinner, C., J. Differential Equations, 252, 5832, 2012 · Zbl 1252.35087
[56] Cieślak, T.; Stinner, C., Acta Appl. Math., 129, 135, 2014 · Zbl 1295.35123
[57] Cieślak, T.; Stinner, C., J. Differential Equations, 258, 2080, 2015 · Zbl 1331.35041
[58] Coll, J. C., Mar. Biol., 118, 177, 1994
[59] Corrias, L.; Perthame, B., Math. Comput. Model., 47, 755, 2008 · Zbl 1134.92006
[60] Corrias, L.; Perthame, B.; Zaag, H., C. R. Acad. Sci. Paris, Ser. I, 336, 141, 2003 · Zbl 1028.35062
[61] Corrias, L.; Perthame, B.; Zaag, H., Milan J. Math., 72, 1, 2004 · Zbl 1115.35136
[62] D’Acunto, B.; Frunzo, L., Math. Comput. Model., 53, 1596, 2011 · Zbl 1219.35324
[63] De Angelis, E., Math. Models Methods Appl. Sci., 24, 2723, 2014 · Zbl 1328.92050
[64] M. del Pino, G. Vaira and A. Pistoia, Large mass boundary condensation patterns in the stationary Keller-Segel system, arXiv: 1403.2511.
[65] del Pino, M.; Wei, J., Nonlinearity, 19, 661, 2006 · Zbl 1137.35007
[66] Dessaud, E., Nature, 450, 717, 2007
[67] DiFrancesco, M.; Lorz, A.; Markowich, P. A., Discrete Contin. Dynam. Syst. Ser. A, 28, 1437, 2010 · Zbl 1276.35103
[68] Dolak, Y.; Schmeiser, C., J. Math. Biol., 51, 595, 2005 · Zbl 1077.92003
[69] Dolbeault, J.; Schmeiser, C., Discrete Contin. Dynam. Syst. Ser. A, 25, 109, 2009 · Zbl 1180.35131
[70] Dombowski, C., Phys. Rev. Lett., 93, 098103, 2004
[71] Duan, R. J.; Lorz, A.; Markowich, P. A., Comm. Partial Differential Equations, 35, 1635, 2010 · Zbl 1275.35005
[72] Duan, R.; Xiang, Z., Int. Math. Res. Notices, 2012, 20, 2012
[73] Efendiev, M.; Nakaguchi, E., Adv. Math. Sci. Appl., 16, 569, 2006 · Zbl 1130.37402
[74] Espejo, E.; Suzuki, T., Nonlinear Anal. Real World Appl., 21, 110, 2015 · Zbl 1302.35102
[75] Feireisl, E.; Laurencõt, P.; Petzeltovo, H., J. Differential Equations, 236, 551, 2010
[76] Filbet, F.; Laurençot, P.; Perthame, B., J. Math. Biol., 50, 189, 2005 · Zbl 1080.92014
[77] Folkman, J., Semin. Oncol., 29, 15, 2002
[78] Folkman, J.; Kerbel, K., Nature Rev. Cancer, 2, 727, 2002
[79] Fontelos, M. A.; Friedman, A.; Hu, B., SIAM J. Math. Anal., 33, 1330, 2002 · Zbl 1020.35030
[80] Friedman, A.; McLeod, B., Indiana Univ. Math. J., 34, 425, 1985 · Zbl 0576.35068
[81] Fujie, K., J. Math. Anal. Appl., 424, 675, 2015 · Zbl 1310.35144
[82] K. Fujie, A. Itô, M. Winkler and T. Yokota, Stabilization in a chemotaxis model for tumor invasion, preprint. · Zbl 1322.35059
[83] K. Fujie and T. Senba, Global existence and boundedness in a parabolic-elliptic Keller-Segel system with general sensitivity, preprint. · Zbl 1330.35051
[84] Fujie, K.; Winkler, M.; Yokota, T., Math. Models Methods Appl. Sci., 38, 1212, 2014
[85] Fujie, K.; Winkler, M.; Yokota, T., Nonlinear Anal., 109, 56, 2014 · Zbl 1297.35051
[86] Gajewski, H.; Zacharias, K., Math. Nachr., 195, 77, 1998 · Zbl 0918.35064
[87] Gerisch, A.; Painter, K. J.; Chauviere, A.; Preziosi, L.; Verdier, C., Chapter 12: Mathematical Modeling of Cell Adhesion and Its Applications to Developmental Biology and Cancer Invasion, 2010, Chapman & Hall/CRC
[88] Giga, Y.; Kohn, R. V., Comm. Pure Appl. Math., 38, 297, 1985 · Zbl 0585.35051
[89] Giga, Y.; Sohr, H., J. Funct. Anal., 102, 72, 1991 · Zbl 0739.35067
[90] Harada, G., Adv. Differential Equations, 6, 1255, 2001
[91] Haskovec, J.; Schmeiser, C., J. Statist. Phys., 135, 133, 2009 · Zbl 1173.82021
[92] Haskovec, J.; Schmeiser, C., Comm. Partial Differential Equations, 36, 940, 2011 · Zbl 1229.35111
[93] Herrero, M. A.; Köhn, A.; Pérez-Pomares, J. M., Math. Models Methods Appl. Sci., 19, 1483, 2009 · Zbl 1180.35286
[94] Herrero, M. A.; Velázquez, J. J. L., Ann. Scuola Norm. Sup. Pisa Cl. Sci., 24, 633, 1997 · Zbl 0904.35037
[95] Hill, N. A.; Pedley, T. J., Fluid Dynam. Res., 37, 1, 2005 · Zbl 1153.76455
[96] Hillen, T., Discrete Contin. Dynam. Syst. Ser. B, 4, 961, 2004 · Zbl 1052.92006
[97] Hillen, T.; Othmer, H., SIAM J. Appl. Math., 61, 751, 2000 · Zbl 1002.35120
[98] Hillen, T.; Painter, K. J., J. Math. Biol., 58, 183, 2009 · Zbl 1161.92003
[99] Hillen, T.; Painter, K.; Winkler, M., Math. Models Methods Appl. Sci., 23, 165, 2013 · Zbl 1263.35204
[100] Horstmann, D., Jahresberichte Deutsch. Math.-Verein, 105, 103, 2003 · Zbl 1071.35001
[101] Horstmann, D.; Wang, G., Eur. J. Appl. Math., 12, 159, 2001 · Zbl 1017.92006
[102] Horstmann, D.; Winkler, M., J. Differential Equations, 215, 52, 2005 · Zbl 1085.35065
[103] Ishida, S.; Seki, K.; Yokota, T., J. Differential Equations, 256, 2993, 2014 · Zbl 1295.35252
[104] Ishida, S.; Yokota, T., J. Differential Equations, 252, 1421, 2012 · Zbl 1237.35093
[105] Ishida, S.; Yokota, T., J. Differential Equations, 252, 2469, 2012 · Zbl 1241.35118
[106] Kang, K.; Stevens, A.; Velázquez, J. J. L., Comm. Partial Differential Equations, 35, 245, 2010 · Zbl 1193.35013
[107] Kavallaris, N.; Souplet, Ph., SIAM J. Math. Anal., 41, 128, 2009
[108] Keller, E. F., Biological Growth and Spread (Springer, 1980) pp. 379-387.
[109] Keller, E. F.; Segel, L. A., J. Theor. Biol., 26, 399, 1970 · Zbl 1170.92306
[110] Keller, E. F.; Segel, L. A., J. Theor. Biol., 30, 225, 1971 · Zbl 1170.92307
[111] Kiselev, A.; Ryzhik, L., Comm. Partial Differential Equations, 37, 298, 2012 · Zbl 1236.35190
[112] Klapper, I.; Dockeryt, J., SIAM Rev., 52, 221, 2010 · Zbl 1191.92065
[113] Kond, S.; Miura, T., Science, 329, 1616, 2010
[114] Kowalczyk, R., J. Math. Anal. Appl., 305, 566, 2005 · Zbl 1065.35063
[115] Kozono, H.; Sugiyama, Y., J. Differential Equations, 247, 1, 2009 · Zbl 1207.35178
[116] H. Kozono and Y. Sugiyama, Existence and uniqueness theorem on mild solutions to the Keller-Segel system coupled with the Navier-Stokes fluid, preprint. · Zbl 1343.35069
[117] Kuto, K., Physica D, 241, 1629, 2012
[118] Lachowicz, M., Multiscale Problems in the Life Sciences, 1940 (Springer, 2008) pp. 201-267. · Zbl 1264.92050
[119] Lankeit, J., J. Differential Equations, 258, 1158, 2015 · Zbl 1319.35085
[120] J. Lankeit, Chemotaxis can prevent thresholds on population density, to appear in Discrete Contin. Dynam. Syst. Ser. B.
[121] J. Lankeit, A new approach toward global existence in a two-dimensional parabolic chemotaxis system with singular sensitivity, Math. Models Methods Appl. Sci., DOI: 10.1002/mma.3489.
[122] Levermore, C. D., J. Stat. Phys., 83, 1021, 1996 · Zbl 1081.82619
[123] Li, T., Math. Models Methods Appl. Sci., 25, 721, 2015
[124] Li, T.; Wang, Z.-A., J. Differential Equations, 250, 1310, 2011 · Zbl 1213.35109
[125] Lions, P. L., Arch. Rational Mech. Anal., 74, 335, 1980 · Zbl 0449.35036
[126] Liţcanu, G.; Morales-Rodrigo, C., Math. Models Methods Appl. Sci., 20, 1721, 2010 · Zbl 1213.35250
[127] Liu, J.-G.; Lorz, A., Ann. Inst. H. Poincaré Anal. Non Linéaire, 28, 643, 2011 · Zbl 1236.92013
[128] Lorenz, T.; Surulescu, C., Math. Models Methods Appl. Sci., 24, 2383, 2014 · Zbl 1300.92016
[129] Luckhaus, S.; Sugiyama, Y., Indiana Univ. Math. J., 56, 1279, 2007 · Zbl 1118.35006
[130] Luckhaus, S.; Sugiyama, Y.; Velázquez, J. J. L., Arch. Rational Mech. Anal., 206, 31, 2012 · Zbl 1256.35180
[131] Maini, P. K., J. Math. Biol., 27, 507, 1989 · Zbl 0716.92004
[132] Mallet, D. G.; Pettet, G. J., Bull. Math. Biol., 68, 231, 2006 · Zbl 1334.92061
[133] Manásevich, R.; Phan, Q. H.; Souplet, Ph., Eur. J. Appl. Math., 24, 273, 2013 · Zbl 1284.35445
[134] Marciniak-Czochra, A.; Ptashnyk, M., Math. Models Methods Appl. Sci., 20, 449, 2010 · Zbl 1194.35043
[135] Miller, R. L., J. Exp. Zool., 234, 383, 1985
[136] Mizoguchi, N., Calc. Var. Partial Differential Equations, 48, 491, 2013 · Zbl 1288.35286
[137] Mizoguchi, N.; Souplet, Ph., Ann. Inst. H. Poincaré Anal. Non Linéaire, 31, 851, 2014 · Zbl 1302.35075
[138] N. Mizoguchi and M. Winkler, Finite-time blow-up in the two-dimensional Keller-Segel system, preprint.
[139] N. Mizoguchi and M. Winkler, Boundedness of global solutions in the two-dimensional parabolic Keller-Segel system, preprint.
[140] Muller, I.; Ruggeri, T., Rational Extended Thermodynamics, 1998, Springer · Zbl 0895.00005
[141] Murray, J. D., Mathematical Biology II. Spatial Models and Biomedical Applications, 2003, Springer · Zbl 1006.92002
[142] Musso, M.; Wei, J., Asympt. Anal., 49, 217, 2006 · Zbl 1115.35051
[143] Nagai, T.; Senba, T., Adv. Math. Sci. Appl., 8, 145, 1998 · Zbl 0902.35010
[144] Nagai, T.; Senba, T.; Suzuki, T., Hiroshima Math. J., 30, 463, 2000 · Zbl 0984.35079
[145] Nagai, T.; Senba, T.; Yoshida, K., Funkcial. Ekvac., 40, 411, 1997 · Zbl 0901.35104
[146] Nagai, T.; Senba, T.; Yoshida, K., RIMS Kokyuroku, 1009, 22, 1997 · Zbl 0931.92005
[147] Nakaguchi, E.; Osaki, K., Nonlinear Anal., 74, 286, 2011
[148] Nakaguchi, E.; Osaki, K., Discrete Contin. Dynam. Syst. Ser. B, 18, 2627, 2013 · Zbl 1318.37028
[149] E. Nakaguchi and K. Osaki, L p -estimates of solutions to n-dimensional parabolic-parabolic system for chemotaxis with subquadratic degradation, to appear in Funkcial. Ekvac. · Zbl 1345.35121
[150] Nowak, M. A., Evolutionary Dynamics — Exploring the Equations of Life, 2006, Harvard Univ. Press · Zbl 1115.92047
[151] Nowak, M. A.; Sigmund, K., Science, 303, 793, 2004
[152] Olsen, L., Math. Biosci., 158, 145, 1999
[153] Olsen, L.; Sherratt, J. A.; Maini, P. K., Bull. Math. Biol., 58, 787, 1996 · Zbl 0865.92010
[154] Osaki, K., Nonlinear Anal., 51, 119, 2002
[155] Osaki, K.; Yagi, A., Funkcial. Ekvac., 44, 441, 2001 · Zbl 1145.37337
[156] Othmer, H. G.; Dunbar, S. R.; Alt, W., J. Math. Biol., 26, 263, 1988 · Zbl 0713.92018
[157] Othmer, H. G.; Hillen, T., SIAM J. Appl. Math., 62, 1222, 2002 · Zbl 1103.35098
[158] Painter, K. J.; Hillen, T., Canad. Appl. Math. Quart., 10, 501, 2002 · Zbl 1057.92013
[159] Painter, K. J.; Hillen, T., Physica D, 240, 363, 2011 · Zbl 1255.37026
[160] Painter, K. J.; Maini, P. K.; Othmer, H. G., J. Math. Biol., 41, 285, 2000 · Zbl 0969.92003
[161] Patlak, C. S., Bull. Math. Biol., 15, 311, 1953 · Zbl 1296.82044
[162] Payne, L. E.; Straughan, B., Studies Appl. Math., 123, 337, 2009 · Zbl 1180.35529
[163] Perthame, B., Appl. Math., 49, 539, 2004 · Zbl 1099.35157
[164] Perthame, B.; Dalibard, A. L., Trans. Amer. Math. Soc., 361, 2319, 2009 · Zbl 1180.35343
[165] Quittner, P.; Souplet, Ph., Superlinear Parabolic Problems. Blowup, Global Existence and Steady States, 2007, Birkhäuser · Zbl 1128.35003
[166] Ringhofer, C.; Schmeiser, C.; Zwirchmayr, A., SIAM J. Numer. Anal., 39, 1078, 2001 · Zbl 0994.82080
[167] Roth, S., Dev. Genes Evol., 221, 255, 2011
[168] Saragosti, J., PLoS Comput. Biol., 6, 1000890, 2011
[169] R. Schweyer, Stable blow-up dynamic for the parabolic-parabolic Patlak-Keller-Segel model, arXiv: 1403.4975.
[170] Senba, T.; Suzuki, T., Adv. Math. Sci. Appl., 10, 191, 2000 · Zbl 0999.35031
[171] Senba, T.; Suzuki, T., Abstr. Appl. Anal., 2006, 1, 2006
[172] Sohr, H., The Navier-Stokes Equations. An Elementary Functional Analytic Approach, 2001, Birkhäuser · Zbl 0983.35004
[173] Stolarska, M. A.; Yangjin, K. I. M.; Othmer, H., Philos. Trans. A Math. Phys. Eng. Sci., 67, 3526, 2009
[174] Stinner, C.; Surulescu, C.; Winkler, M., SIAM J. Math. Anal., 46, 1969, 2014 · Zbl 1301.35189
[175] Stinner, C.; Winkler, M., Nonlinear Anal. Real World Appl., 12, 3727, 2011 · Zbl 1268.35072
[176] Sugiyama, Y., Differential Integral Equations, 20, 133, 2007 · Zbl 1212.35241
[177] Sugiyama, Y., Math. Nachr., 285, 744, 2012 · Zbl 1276.35102
[178] Sugiyama, Y.; Kunii, H., J. Differential Equations, 227, 333, 2006 · Zbl 1102.35046
[179] Tao, Y., J. Math. Anal. Appl., 354, 60, 2009 · Zbl 1160.92027
[180] Tao, Y., Nonlinear Anal. Real World Appl., 12, 418, 2011 · Zbl 1205.35144
[181] Y. Tao, Boundedness in a two-dimensional chemotaxis-haptotaxis system, arXiv: 1407-7382.
[182] Tao, Y.; Wang, M., SIAM J. Math. Anal., 41, 1533, 2009 · Zbl 1201.35005
[183] Tao, Y.; Wang, Z.-A., Math. Models Methods Appl. Sci., 23, 1, 2013 · Zbl 1403.35136
[184] Tao, Y.; Wang, L.; Wang, Z. A., Discrete Contin. Dynam. Syst. Ser. B, 18, 821, 2013 · Zbl 1272.35040
[185] Tao, Y.; Winkler, M., SIAM J. Math. Anal., 43, 685, 2011 · Zbl 1259.35210
[186] Tao, Y.; Winkler, M., J. Differential Equations, 252, 692, 2012 · Zbl 1382.35127
[187] Tao, Y.; Winkler, M., Discrete Contin. Dynam. Syst. Ser. A, 32, 1901, 2012 · Zbl 1276.35105
[188] Tao, Y.; Winkler, M., J. Differential Equations, 252, 2520, 2012 · Zbl 1268.35016
[189] Tao, Y.; Winkler, M., Ann. Inst. Henri Poincaré Anal. Non Linéaire, 30, 157, 2013 · Zbl 1283.35154
[190] Tao, Y.; Winkler, M., J. Differential Equations, 257, 784, 2014 · Zbl 1295.35144
[191] Tao, Y.; Winkler, M., Nonlinearity, 27, 1225, 2014 · Zbl 1293.35047
[192] Tao, Y.; Winkler, M., Proc. Roy. Soc. Edinburgh Sect. A, 144, 1067, 2014 · Zbl 1312.35171
[193] Y. Tao and M. Winkler, Large time behavior in a multi-dimensional chemotaxis-haptotaxis model with slow signal diffusion, preprint. · Zbl 1328.35103
[194] Y. Tao and M. Winkler, Blow-up prevention by quadratic degradation in a two-dimensional Keller-Segel-Navier-Stokes system, preprint. · Zbl 1356.35054
[195] Tello, J. I.; Winkler, M., Comm. Partial Differential Equations, 32, 849, 2007 · Zbl 1121.37068
[196] Tello, J. I.; Winkler, M., Ann. Scuola Norm. Sup. Pisa Cl. Sci., 12, 833, 2013 · Zbl 1295.35136
[197] Tindall, M. J., Bull. Math. Biol., 70, 1570, 2008
[198] Tuval, I., Proc. Natl. Acad. Sci. USA, 102, 2277, 2005
[199] Vázquez, J. L., The Porous Medium Equation. Mathematical Theory, 2006, Oxford Univ. Press
[200] Verbeni, M., Phys. Life Rev., 10, 457, 2013
[201] Vorotnikov, D., Commun. Math. Sci., 12, 545, 2014 · Zbl 1302.35069
[202] Walker, C.; Webb, G. F., SIAM J. Math. Anal., 38, 1694, 2007 · Zbl 1120.92024
[203] L. Wang and Ch. Mu, Global existence to a higher-dimensional quasilinear chemotaxis system with consumption of chemoattractant, to appear in Z. Angew. Math. Phys., DOI: 10.1007/s00033-014-0491-9. · Zbl 1328.92019
[204] Wang, L.; Mu, Ch.; Zheng, P., J. Differential Equations, 256, 1847, 2014 · Zbl 1301.35060
[205] Wang, L.; Mu, Ch.; Zhou, Sh., Z. Angew. Math. Phys., 65, 1137, 2014 · Zbl 1305.92024
[206] Y. Wang and X. Cao, Global classical solutions of a 3D chemotaxis-Stokes system with rotation, to appear in Discrete Contin. Dynam. Syst. Ser. B.
[207] Wang, Z. A.; Winkler, M.; Wrzosek, D., Nonlinearity, 24, 3279, 2011 · Zbl 1255.35213
[208] Wang, Z. A.; Winkler, M.; Wrzosek, D., SIAM J. Math. Anal., 44, 3502, 2012 · Zbl 1277.35223
[209] Winkler, M., J. Math. Anal. Appl., 348, 708, 2008 · Zbl 1147.92005
[210] Winkler, M., Comm. Partial Differential Equations, 35, 1516, 2010 · Zbl 1290.35139
[211] Winkler, M., J. Differential Equations, 248, 2889, 2010 · Zbl 1190.92004
[212] Winkler, M., Math. Models Methods Appl. Sci., 33, 12, 2010 · Zbl 1182.35220
[213] Winkler, M., J. Math. Anal. Appl., 384, 261, 2011 · Zbl 1241.35028
[214] Winkler, M., Math. Models Methods Appl. Sci., 34, 176, 2011 · Zbl 1291.92018
[215] Winkler, M., Math. Nachr., 283, 1664, 2011
[216] Winkler, M., Comm. Partial Differential Equations, 37, 319, 2012 · Zbl 1236.35192
[217] Winkler, M., J. Math. Pures Appl., 100, 748, 2013 · Zbl 1326.35053
[218] Winkler, M., Arch. Rational Mech. Anal., 211, 455, 2014 · Zbl 1293.35220
[219] Winkler, M., J. Differential Equations, 257, 1056, 2014 · Zbl 1293.35048
[220] Winkler, M., J. Nonlinear Sci., 24, 809, 2014 · Zbl 1311.35040
[221] M. Winkler, Global weak solutions in a three-dimensional chemotaxis-Navier-Stokes system, Ann. Inst. Henri Poincaré Anal. Non Linéaire, to appear. · Zbl 1351.35239
[222] M. Winkler, Boundedness and large time behavior in a three-dimensional chemo-taxis-Stokes system with nonlinear diffusion and general sensitivity, arXiv: 1501. 07059.
[223] M. Winkler, A two-dimensional chemotaxis-Stokes system with rotational flux: Global solvability, eventual smoothness and stabilization, preprint.
[224] M. Winkler, Large-data global generalized solutions in a chemotaxis system with tensor-valued sensitivities, preprint. · Zbl 1330.35202
[225] Wrzosek, D., Proc. Roy. Soc. Edinburgh Sect. A, 136, 431, 2006 · Zbl 1104.35007
[226] Wrzosek, D., Math. Model. Nat. Phenom., 5, 123, 2010 · Zbl 1184.35166
[227] Xue, C., J. Math. Biol., 70, 1, 2015 · Zbl 1375.92012
[228] Xue, C.; Othmer, H. G., SIAM J. Appl. Math., 70, 133, 2009 · Zbl 1184.35308
[229] Yang, Y.; Chen, H.; Liu, W., SIAM J. Math. Anal., 33, 763, 2001 · Zbl 1029.35132
[230] Zhang, Q.; Zheng, X., SIAM J. Math. Anal., 46, 3078, 2014 · Zbl 1444.35011
[231] Zheng, P., J. Math. Anal. Appl., 424, 509, 2015
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.