×

Macroscopic equations for bacterial chemotaxis: integration of detailed biochemistry of cell signaling. (English) Zbl 1375.92012

Summary: Chemotaxis of single cells has been extensively studied and a great deal on intracellular signaling and cell movement is known. However, systematic methods to embed such information into continuum PDE models for cell population dynamics are still in their infancy. In this paper, we consider chemotaxis of run-and-tumble bacteria and derive continuum models that take into account of the detailed biochemistry of intracellular signaling. We analytically show that the macroscopic bacterial density can be approximated by the Patlak-Keller-Segel equation in response to signals that change slowly in space and time. We derive, for the first time, general formulas that represent the chemotactic sensitivity in terms of detailed descriptions of single-cell signaling dynamics in arbitrary space dimensions. These general formulas are useful in explaining relations of single cell behavior and population dynamics. As an example, we apply the theory to chemotaxis of bacterium Escherichia coli and show how the structure and kinetics of the intracellular signaling network determine the sensing properties of E. coli populations. Numerical comparison of the derived PDEs and the underlying cell-based models show quantitative agreements for signals that change slowly, and qualitative agreements for signals that change extremely fast. The general theory we develop here is readily applicable to chemotaxis of other run-and-tumble bacteria, or collective behavior of other individuals that move using a similar strategy.

MSC:

92C17 Cell movement (chemotaxis, etc.)
92C37 Cell biology
35Q92 PDEs in connection with biology, chemistry and other natural sciences
60J75 Jump processes (MSC2010)
Full Text: DOI

References:

[1] Adler J (1966) Chemotaxis in bacteria. Science 153:708-716 · doi:10.1126/science.153.3737.708
[2] Armitage JP, Pitta TP, Vigeant MA, Packer HL, Ford RM (1999) Transformations in flagellar structure of Rhodobacter sphaeroides and possible relationship to changes in swimming speed. J Bacteriol 181(16):4825-4833
[3] Aminzare Z, Sontag ED (2013) Remarks on a population-level model of chemotaxis: advection-diffusion approximation and simulations. arXiv:1302.2605 (preprint) · Zbl 1263.35129
[4] Berg HC (1975) How bacteria swim. Sci Am 233:36-44 · doi:10.1038/scientificamerican0875-36
[5] Berg HC (1983) Random walks in biology. Princeton University Press, Princeton
[6] Berg HC (2000) Motile behavior of bacteria. Phys Today 53(1):24-29 · doi:10.1063/1.882934
[7] Berg HC, Brown D (1972) Chemotaxis in Escherichia coli analyzed by three-dimensional tracking. Nature 239:502-507 · doi:10.1038/239500a0
[8] Bray D, Levin MD, Lipkow K (2007) The chemotactic behavior of computer-based surrogate bacteria. Curr Biol 17(1):12-19 · doi:10.1016/j.cub.2006.11.027
[9] Briegel A, Li X, Bilwes AM, Hughes KT, Jensen GJ, Crane BR (2012) Bacterial chemoreceptor arrays are hexagonally packed trimers of receptor dimers networked by rings of kinase and coupling proteins. Proc Natl Acad Sci USA 109(10):3766-3771 · doi:10.1073/pnas.1115719109
[10] Budrene EO, Berg HC (1991) Complex patterns formed by motile cells of Escherichia coli. Nature 349(6310):630-633 · doi:10.1038/349630a0
[11] Budrene EO, Berg HC (1995) Dynamics of formation of symmetrical patterns by chemotactic bacteria. Nature 376(6535):49-53 · doi:10.1038/376049a0
[12] Butler SM, Camilli A (2004) Both chemotaxis and net motility greatly influence the infectivity of Vibrio cholerae. Proc Natl Acad Sci USA 101(14):5018-5023. doi:10.1073/pnas.0308052101 · doi:10.1073/pnas.0308052101
[13] Chen KC, Cummings PT, Ford RM (1998) Perturbation expansion of alt’s cell balance equations reduces to Segel’s one-dimensional equations for shallow chemoattractant gradients. SIAM J Appl Math 59(1):35-57 · Zbl 0918.60023 · doi:10.1137/S0036139996301283
[14] Cluzel P, Surette M, Leibler S (2000) An ultrasensitive bacterial motor revealed by monitoring signaling proteins in single cells. Science 287:1652-1655 · doi:10.1126/science.287.5458.1652
[15] Dallon JC, Othmer HG (1997) A discrete cell model with adaptive signalling for aggregation of Dictyostelium discoideum. Philos Trans R Soc Lond B Biol Sci 352(1351):391-417 · doi:10.1098/rstb.1997.0029
[16] Duffy KJ, Ford RM (1997) Turn angle and run time distributions characterize swimming behavior for Pseudomonas putida. J Bacteriol 179(4):1428-1430
[17] Erban R, Othmer HG (2004) From individual to collective behavior in bacterial chemotaxis. SIAM J Appl Math 65(2):361-391 · Zbl 1073.35116 · doi:10.1137/S0036139903433232
[18] Erban R, Othmer H (2005) From signal transduction to spatial pattern formation in E. coli: a paradigm for multiscale modeling in biology. Multiscale Model Simul 3(2):362-394 · Zbl 1073.35205
[19] Franz B, Erban R (2013) Hybrid modelling of individual movement and collective behaviour. In: Dispersal, individual movement and spatial ecology. Springer, Berlin, pp 129-157 · Zbl 1347.92111
[20] Franz B, Xue C, Painter K, Erban R (2013) Travelling waves in hybrid chemotaxis models. Bull Math Biol. doi:10.1007/s11538-013-9924-4 · Zbl 1297.92014
[21] Friedl P, Gilmour D (2009) Collective cell migration in morphogenesis, regeneration and cancer. Nat Rev Mol Cell Biol 10(7):445-457. doi:10.1038/nrm2720 · doi:10.1038/nrm2720
[22] Gyrya V, Aranson IS, Berlyand LV, Karpeev D (2010) A model of hydrodynamic interaction between swimming bacteria. Bull Math Biol 72(1):148-183. doi:10.1007/s11538-009-9442-6 · Zbl 1184.92007 · doi:10.1007/s11538-009-9442-6
[23] Hazelbauer GL (2012) Bacterial chemotaxis: the early years of molecular studies. Annu Rev Microbiol 66:285-303. doi:10.1146/annurev-micro-092611-150120 · doi:10.1146/annurev-micro-092611-150120
[24] Hillen T, Othmer HG (2000) The diffusion limit of transport equations derived from velocity-jump processes. SIAM J Appl Math 61(3):751-775 · Zbl 1002.35120 · doi:10.1137/S0036139999358167
[25] Hillen T, Painter KJ (2009) A user’s guide to PDE models for chemotaxis. J Math Biol 58(1-2):183-217. doi:10.1007/s00285-008-0201-3 · Zbl 1161.92003 · doi:10.1007/s00285-008-0201-3
[26] Hilpert M (2005) Lattice-Boltzmann model for bacterial chemotaxis. J Math Biol 51(3):302-332 · Zbl 1086.92004 · doi:10.1007/s00285-005-0318-6
[27] Horstmann D (2003) From 1970 until present: the Keller-Segel model in chemotaxis and its consequences. Jahresbericht der DMV 105(3):103-165 · Zbl 1071.35001
[28] Hugdahl MB, Beery JT, Doyle MP (1988) Chemotactic behavior of Campylobacter jejuni. Infect Immun 56(6):1560-1566
[29] Jin T, Xu X, Hereld D (2008) Chemotaxis, chemokine receptors and human disease. Cytokine 44(1):1-8. doi:10.1016/j.cyto.2008.06.017 · doi:10.1016/j.cyto.2008.06.017
[30] Kalinin YV, Jiang L, Tu Y, Wu M (2009) Logarithmic sensing in Escherichia coli bacterial chemotaxis. Biophys J 96(6):2439-2448. doi:10.1016/j.bpj.2008.10.027 · doi:10.1016/j.bpj.2008.10.027
[31] Kaya T, Koser H (2012) Direct upstream motility in Escherichia coli. Biophys J 102(7):1514-1523. doi:10.1016/j.bpj.2012.03.001 · doi:10.1016/j.bpj.2012.03.001
[32] Keller EF, Segel LA (1970) Initiation of slime mold aggregation viewed as an instability. J Theor Biol 26:399-415 · Zbl 1170.92306 · doi:10.1016/0022-5193(70)90092-5
[33] Keller EF, Segel LA (1971a) Model for chemotaxis. J Theor Biol 30:225-234 · Zbl 1170.92307 · doi:10.1016/0022-5193(71)90050-6
[34] Keller EF, Segel LA (1971b) Traveling bands of chemotactic bacteria: a theoretical analysis. J Theor Biol 30:235-248 · Zbl 1170.92308 · doi:10.1016/0022-5193(71)90051-8
[35] Kim Y, Stolarska MA, Othmer HG (2011) The role of the microenvironment in tumor growth and invasion. Prog Biophys Mol Biol 106(2):353-379. doi:10.1016/j.pbiomolbio.2011.06.006 · doi:10.1016/j.pbiomolbio.2011.06.006
[36] Kojadinovic M, Armitage JP, Tindall MJ, Wadhams GH (2013) Response kinetics in the complex chemotaxis signalling pathway of Rhodobacter sphaeroides. J R Soc Interface 10(81):20121001. doi:10.1098/rsif.2012.1001
[37] Koshland DE (1980) Bacterial chemotaxis as a model behavioral system. Raven Press, New York
[38] Liu J, Hu B, Morado DR, Jani S, Manson MD, Margolin W (2012) Molecular architecture of chemoreceptor arrays revealed by cryoelectron tomography of Escherichia coli minicells. Proc Natl Acad Sci USA 109(23):E1481-E1488. doi:10.1073/pnas.1200781109 · doi:10.1073/pnas.1200781109
[39] Long W, Hilpert M (2008) Lattice-Boltzmann modeling of contaminant degradation by chemotactic bacteria: exploring the formation and movement of bacterial bands. Water Resour Res 44(9):W09415 · Zbl 1170.92308
[40] Marcos M, Fu HC, Powers TR, Stocker R (2012) Bacterial rheotaxis. Proc Natl Acad Sci USA 109(13):4780-4785. doi:10.1073/pnas.1120955109 · doi:10.1073/pnas.1120955109
[41] Marx RB, Aitken MD (2000) A material-balance approach for modeling bacterial chemotaxis to a consumable substrate in the capillary assay. Biotechnol Bioeng 68(3):308-315 · doi:10.1002/(SICI)1097-0290(20000505)68:3<308::AID-BIT9>3.0.CO;2-N
[42] Nicolau JDVV, Armitage JP, Maini PK (2009) Directional persistence and the optimality of run-and-tumble chemotaxis. Comput Biol Chem 33(4):269-274. doi:10.1016/j.compbiolchem.2009.06.003 · Zbl 1403.92038 · doi:10.1016/j.compbiolchem.2009.06.003
[43] Othmer HG, Hillen T (2002) The diffusion limit of transport equations II: chemotaxis equations. SIAM J Appl Math 62:1222-1250 · Zbl 1103.35098 · doi:10.1137/S0036139900382772
[44] Othmer H, Xue C (2013) The mathematical analysis of biological aggregation and dispersal: progress, problems and perspectives. In: Lewis M, Maini P, Petrovskii S (eds) Dispersal, individual movement and spatial ecology: a mathematical perspective. Springer, Berlin · Zbl 1347.92114
[45] Othmer HG, Dunbar SR, Alt W (1988) Models of dispersal in biological systems. J Math Biol 26(3):263-298 · Zbl 0713.92018 · doi:10.1007/BF00277392
[46] Othmer HG, Painter KJ, Umulis D, Xue C (2009) The intersection of theory and application in elucidating pattern formation in developmental biology. Math Model Nat Phenom 4(4):3-82 · Zbl 1181.35297 · doi:10.1051/mmnp/20094401
[47] Othmer HG, Xin X, Xue C (2013) Excitation and adaptation in bacteria-a model signal transduction system that controls taxis and spatial pattern formation. Int J Mol Sci 14(5):9205-9248 · doi:10.3390/ijms14059205
[48] O’Toole R, Lundberg S, Fredriksson SA, Jansson A, Nilsson B, Wolf-Watz H (1999) The chemotactic response of Vibrio anguillarum to fish intestinal mucus is mediated by a combination of multiple mucus components. J Bacteriol 181(14):4308-4317
[49] Pandey G, Jain RK (2002) Bacterial chemotaxis toward environmental pollutants: role in bioremediation. Appl Environ Microbiol 68(12):5789-5795 · doi:10.1128/AEM.68.12.5789-5795.2002
[50] Papanicolaou GC (1975) Asymptotic analysis of transport processes. Bull Am Math Soc 81(2):330-393 · Zbl 0361.60056 · doi:10.1090/S0002-9904-1975-13744-X
[51] Patlak CS (1953) Random walk with persistence and external bias. Bull Math Biophys 15:311-338 · Zbl 1296.82044 · doi:10.1007/BF02476407
[52] Pittman MS, Goodwin M, Kelly DJ (2001) Chemotaxis in the human gastric pathogen Helicobacter pylori: different roles for chew and the three chev paralogues, and evidence for chev2 phosphorylation. Microbiology 147(Pt 9):2493-2504
[53] Porter SL, Wadhams GH, Armitage JP (2008) Rhodobacter sphaeroides: complexity in chemotactic signalling. Trends Microbiol 16(6):251-260. doi:10.1016/j.tim.2008.02.006 · doi:10.1016/j.tim.2008.02.006
[54] Potomkin M, Gyrya V, Aranson I, Berlyand L (2013) Collision of microswimmers in a viscous fluid. Phys Rev E Stat Nonlin Soft Matter Phys 87(5-1):053005 · Zbl 1073.35116
[55] Rao CV, Kirby JR, Arkin AP (2004) Design and diversity in bacterial chemotaxis: a comparative study in Escherichia coli and Bacillus subtilis. PLoS Biol 2(2):E49. doi:10.1371/journal.pbio.0020049 · doi:10.1371/journal.pbio.0020049
[56] Rao CV, Glekas GD, Ordal GW (2008) The three adaptation systems of Bacillus subtilis chemotaxis. Trends Microbiol 16(10):480-487. doi:10.1016/j.tim.2008.07.003 · doi:10.1016/j.tim.2008.07.003
[57] Rivero MA, Tranquillo RT, Buettner HM, Lauffenburger DA (1989) Transport models for chemotactic cell populations based on individual cell behavior. Chem Eng Sci 44(12):2881-2897 · doi:10.1016/0009-2509(89)85098-5
[58] Ryan SD, Haines BM, Berlyand L, Ziebert F, Aranson IS (2011) Viscosity of bacterial suspensions: hydrodynamic interactions and self-induced noise. Phys Rev E Stat Nonlin Soft Matter Phys 82(5 Pt 1):050904
[59] Saragosti J, Calvez V, Bournaveas N, Perthame B, Buguin A, Silberzan P (2011) Directional persistence of chemotactic bacteria in a traveling concentration wave. Proc Natl Acad Sci USA 108(39):16235-16240 · doi:10.1073/pnas.1101996108
[60] Simons JE, Milewski PA (2011) The volcano effect in bacterial chemotaxis. Math Comput Model 53(7-8):1374-1388 · Zbl 1219.35336 · doi:10.1016/j.mcm.2010.01.019
[61] Singh R, Paul D, Jain RK (2006) Biofilms: implications in bioremediation. Trends Microbiol 14(9):389-397. doi:10.1016/j.tim.2006.07.001 · doi:10.1016/j.tim.2006.07.001
[62] Sze CW, Zhang K, Kariu T, Pal U, Li C (2012) Borrelia burgdorferi needs chemotaxis to establish infection in mammals and to accomplish its enzootic cycle. Infect Immun 80(7):2485-2492. doi:10.1128/IAI.00145-12 · doi:10.1128/IAI.00145-12
[63] Tindall MJ, Maini PK, Porter SL, Armitage JP (2008a) Overview of mathematical approaches used to model bacterial chemotaxis II: bacterial populations. Bull Math Biol 70(6):1570-1607. doi:10.1007/s11538-008-9322-5 · Zbl 1209.92006 · doi:10.1007/s11538-008-9322-5
[64] Tindall MJ, Porter SL, Maini PK, Gaglia G, Armitage JP (2008b) Overview of mathematical approaches used to model bacterial chemotaxis I: the single cell. Bull Math Biol 70(6):1525-1569. doi:10.1007/s11538-008-9321-6 · Zbl 1166.92008 · doi:10.1007/s11538-008-9321-6
[65] Tu Y (2013) Quantitative modeling of bacterial chemotaxis: Signal amplification and accurate adaptation. Annu Rev Biophys. doi:10.1146/annurev-biophys-083012-130358
[66] Tu Y, Shimizu TS, Berg HC (2008) Modeling the chemotactic response of Escherichia coli to time-varying stimuli. Proc Natl Acad Sci USA 105(39):14855-14860. doi:10.1073/pnas.0807569105 · doi:10.1073/pnas.0807569105
[67] Tyson R, Lubkin SR, Murray JD (1999a) A minimal mechanism for bacterial pattern formation. Proc R Soc Lond B 266:299-304 · doi:10.1098/rspb.1999.0637
[68] Tyson R, Lubkin SR, Murray JD (1999b) Model and analysis of chemotactic bacterial patterns in a liquid medium. J Math Biol 38:359-375 · Zbl 0921.92005 · doi:10.1007/s002850050153
[69] Tyson JJ, Chen KC, Novak B (2003) Sniffers, buzzers, toggles and blinkers: dynamics of regulatory and signaling pathways in the cell. Curr Opin Cell Biol 15(2):221-231 · doi:10.1016/S0955-0674(03)00017-6
[70] Wang ZA (2013) Mathematics of traveling waves in chemotaxis. DCDS-B 18:601-641 · Zbl 1277.35006 · doi:10.3934/dcdsb.2013.18.601
[71] Williams SM, Chen YT, Andermann TM, Carter JE, McGee DJ, Ottemann KM (2007) Helicobacter pylori chemotaxis modulates inflammation and bacterium-gastric epithelium interactions in infected mice. Infect Immun 75(8):3747-3757. doi:10.1128/IAI.00082-07 · doi:10.1128/IAI.00082-07
[72] Woodward D, Tyson R, Myerscough M, Murray J, Budrene E, Berg H (1995) Spatio-temporal patterns generated by Salmonella typhimurium. Biophys J 68:2181-2189 · doi:10.1016/S0006-3495(95)80400-5
[73] Xin X (2010) Mathematical models of bacterial chemotaxis. Ph.D. thesis, University of Minnesota · Zbl 1312.92013
[74] Xin X, Othmer HG (2012) A “trimer of dimers”-based model for the chemotactic signal transduction network in bacterial chemotaxis. Bull Math Biol 74(10):2339-2382. doi:10.1007/s11538-012-9756-7 · Zbl 1312.92013 · doi:10.1007/s11538-012-9756-7
[75] Xue C, Othmer HG (2009) Multiscale models of taxis-driven patterning in bacterial populations. SIAM J Appl Math 70(1):133-167 · Zbl 1184.35308 · doi:10.1137/070711505
[76] Xue C, Othmer HG, Erban R (2009) From individual to collective behavior of unicellular organisms: recent results and open problems. In: Multiscale phenomena in biology: proceedings of the 2nd conference on mathematics and biology. AIP conference proceedings, vol 1167(1), pp 3-14
[77] Xue C, Budrene EO, Othmer HG (2011), Radial and spiral stream formation in Proteus mirabilis colonies. PLoS Comput Biol 7(12):e1002332
[78] Zhu X, Si G, Deng N, Ouyang Q, Wu T, He Z, Jiang L, Luo C, Tu Y (2012) Frequency-dependent Escherichia coli chemotaxis behavior. Phys Rev Lett 108(12):128101 · doi:10.1103/PhysRevLett.108.128101
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.