×

Chemotaxis with logistic source: very weak global solutions and their boundedness properties. (English) Zbl 1147.92005

Summary: We consider the chemotaxis system
\[ \begin{cases} u_t= \Delta u-\chi\nabla\cdot (u\nabla v)+g(u), &x\in\Omega,\;t>0,\\ 0= \Delta v-v+u, &x\in\Omega,\;t>0, \end{cases} \]
in a smooth bounded domain \(\Omega\subset\mathbb R^n\), where \(\chi>0\) and \(g\) generalizes the logistic function \(g(u)=Au-bu^\alpha\) with \(\alpha>1\), \(A\geq 0\) and \(b>0\). A concept of very weak solutions is introduced, and global existence of such solutions for any nonnegative initial data \(u_0\in L^1(\Omega)\) is proved under the assumption that \(\alpha>2-1/n\). Moreover, boundedness properties of the constructed solutions are studied. Inter alia, it is shown that if \(b\) is sufficiently large and \(u_0\in L^\infty(\Omega)\) has small norm in \(L^\gamma(\Omega)\) for some \(\gamma>n/2\) then the solution is globally bounded. Finally, in the case that additionally \(\alpha>n/2\) holds, a bounded set in \(L^\infty(\Omega)\) can be found which eventually attracts very weak solutions emanating from arbitrary \(L^1\) initial data. The paper closes with numerical experiments that illustrate some of the theoretically established results.

MSC:

92C17 Cell movement (chemotaxis, etc.)
35B35 Stability in context of PDEs
35B30 Dependence of solutions to PDEs on initial and/or boundary data and/or on parameters of PDEs
65C20 Probabilistic models, generic numerical methods in probability and statistics
35B99 Qualitative properties of solutions to partial differential equations
Full Text: DOI

References:

[1] Aida, M.; Osaki, K.; Tsujikawa, T.; Yagi, A.; Mimura, M., Chemotaxis and growth system with singular sensitivity function, Nonlinear Anal. Real World Appl., 6, 2, 323-336 (2005) · Zbl 1066.92004
[2] Alikakos, N. D., \(L^p\) bounds of solutions of reaction-diffusion equations, Comm. Partial Differential Equations, 4, 827-868 (1979) · Zbl 0421.35009
[3] Brézis, H.; Strauss, W. A., Semi-linear second-order elliptic equations in \(L^1\), J. Math. Soc. Japan, 25, 565-590 (1973) · Zbl 0278.35041
[4] Dal Passo, R.; Garcke, H.; Grün, G., On a fourth order degenerate parabolic equation: Global entropy estimates and qualitative behaviour of solutions, SIAM J. Math. Anal., 29, 321-342 (1998) · Zbl 0929.35061
[5] Feireisl, E.; Laurencot, Ph.; Petzeltová, H., On convergence to equilibria for the Keller-Segel chemotaxis model, J. Differential Equations, 236, 551-569 (2007) · Zbl 1139.35018
[6] Fila, M.; Matano, H.; Poláčik, P., Immediate regularization after blow-up, SIAM J. Math. Anal., 37, 752-776 (2005) · Zbl 1102.35053
[7] Friedman, A., Partial Differential Equations (1969), Holt, Rinehart & Winston: Holt, Rinehart & Winston New York · Zbl 0224.35002
[8] Funaki, M.; Mimura, M.; Tsujikawa, T., Travelling front solutions arising in the chemotaxis-growth model, Interfaces Free Bound., 8, 223-245 (2006) · Zbl 1106.35119
[9] Herrero, M. A.; Velázquez, J. J.L., A blow-up mechanism for a chemotaxis model, Ann. Sc. Norm. Super., 24, 663-683 (1997) · Zbl 0904.35037
[10] Herrero, M. A.; Medina, E.; Velázquez, J. J.L., Finite-time aggregation into a single point in a reaction diffusion system, Nonlinearity, 10, 1739-1754 (1997) · Zbl 0909.35071
[11] T. Hillen, J. Renclawowicz, Analysis of an attraction-repulsion chemotaxis model, preprint, http://www.math.ualberta.ca/thillen/publications.html; T. Hillen, J. Renclawowicz, Analysis of an attraction-repulsion chemotaxis model, preprint, http://www.math.ualberta.ca/thillen/publications.html
[12] Horstmann, D., The nonsymmetric case of the Keller-Segel model in chemotaxis: Some recent results, NoDEA Nonlinear Differential Equations Appl., 8, 399-423 (2001) · Zbl 1056.35086
[13] Horstmann, D.; Wang, G., Blow-up in a chemotaxis model without symmetry assumptions, European J. Appl. Math., 12, 159-177 (2001) · Zbl 1017.92006
[14] Horstmann, D.; Winkler, M., Boundedness vs. blow-up in a chemotaxis system, J. Differential Equations, 215, 1, 52-107 (2005) · Zbl 1085.35065
[15] Jäger, W.; Luckhaus, S., On explosions of solutions to a system of partial differential equations modelling chemotaxis, Trans. Amer. Math. Soc., 329, 817-824 (1992) · Zbl 0746.35002
[16] Keller, E. F.; Segel, L. A., Initiation of slime mold aggregation viewed as an instability, J. Theoret. Biol., 26, 399-415 (1970) · Zbl 1170.92306
[17] Mimura, M.; Tsujikawa, T., Aggregating pattern dynamics in a chemotaxis model including growth, Phys. A, 230, 3-4, 499-543 (1996)
[18] Nagai, T., Blow-up of radially symmetric solutions of a chemotaxis system, Adv. Math. Sci. Appl., 5, 2, 581-601 (1995) · Zbl 0843.92007
[19] Nagai, T., Blowup of nonradial solutions to parabolic-elliptic systems modeling chemotaxis in two-dimensional domains, J. Inequal. Appl., 6, 37-55 (2001) · Zbl 0990.35024
[20] Osaki, K.; Tsujikawa, T.; Yagi, A.; Mimura, M., Exponential attractor for a chemotaxis-growth system of equations, Nonlinear Anal., 51, 119-144 (2002) · Zbl 1005.35023
[21] Osaki, K.; Yagi, A., Finite dimensional attractors for one-dimensional Keller-Segel equations, Funkcial. Ekvac., 44, 441-469 (2001) · Zbl 1145.37337
[22] Potapov, A. B.; Hillen, T., Metastability in chemotaxis models, J. Dynam. Differential Equations, 17, 2, 293-330 (2005) · Zbl 1170.35460
[23] Schwarz, H. R., Numerische Mathematik (1993), Teubner: Teubner Stuttgart · Zbl 0804.65001
[24] Senba, T.; Suzuki, T., Parabolic system of chemotaxis: Blowup in a finite and the infinite time, Methods Appl. Anal., 8, 349-367 (2001) · Zbl 1056.92007
[25] Tello, J. I.; Winkler, M., A chemotaxis system with logistic source, Comm. Partial Differential Equations, 32, 6, 849-877 (2007) · Zbl 1121.37068
[26] Temam, R., Navier-Stokes Equations. Theory and Numerical Analysis, Stud. Math. Appl., vol. 2 (1977), North-Holland: North-Holland Amsterdam · Zbl 0383.35057
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.