×

Controllability of nonlinear fractional evolution systems in Banach spaces: a survey. (English) Zbl 1478.93070

In this paper, authors have presented a survey for some recent research on the controllability of nonlinear fractional evolution systems (FESs) in Banach spaces. The prime focus is exact controllability and approximate controllability of several types of FESs, which include the basic systems with classical initial and nonlocal initial conditions, FESs with a time delay or impulsive effects. Furthermore, controllability results via resolvent operator are reviewed in details. Finally, the conclusions of this work and the research prospect are presented, which provides a reference for further studies.

MSC:

93B05 Controllability
93C25 Control/observation systems in abstract spaces
34K30 Functional-differential equations in abstract spaces
35R11 Fractional partial differential equations
37L05 General theory of infinite-dimensional dissipative dynamical systems, nonlinear semigroups, evolution equations
Full Text: DOI

References:

[1] M. Alipour; M. A. Vali; A. H. Borzabadi, A hybrid parametrization approach for a class of nonlinear optimal control problems, Numer. Algebra Control Optim., 9, 493-506 (2019) · Zbl 1439.49041 · doi:10.3934/naco.2019037
[2] O. A. Arino; T. A. Burton; J. R. Haddock, Periodic solutions to functional-differential equations, Proc. Roy. Soc. Edinburgh Sect. A, 101, 253-271 (1985) · Zbl 0582.34077 · doi:10.1017/S0308210500020813
[3] K. Aruna Sakthi; A. Vinodkumar, Stabilization on input time-varying delay for linear switched systems with truncated predictor control, Numer. Algebra Control Optim., 10, 237-247 (2020) · Zbl 1453.93195 · doi:10.3934/naco.2019050
[4] K. Balachandran; J. P. Dauer, Controllability of nonlinear systems via fixed-point theorems, J. Optim. Theory Appl., 53, 345-352 (1987) · Zbl 0596.93010 · doi:10.1007/BF00938943
[5] J. T. Betts; S. L. Campbell; C. Digirolamo, Initial guess sensitivity in computational optimal control problems, Numer. Algebra Control Optim., 10, 39-43 (2020) · Zbl 1439.49046 · doi:10.3934/naco.2019031
[6] C. Bucur, Local density of Caputo-stationary functions in the space of smooth functions, ESAIM Control Optim. Calc. Var., 23, 1361-1380 (2017) · Zbl 1396.26013 · doi:10.1051/cocv/2016056
[7] Y.-K. Chang; A. Pereira; R. Ponce, Approximate controllability for fractional differential equations of Sobolev type via properties on resolvent operators, Fract. Calc. Appl. Anal., 20, 963-987 (2017) · Zbl 1369.93081 · doi:10.1515/fca-2017-0050
[8] J. Chen, X. Li and D. Wang, Asymptotic stability and exponential stability of impulsive delayed Hopfield neural networks, Abstr. Appl. Anal., 2013 (2013), 10pp. · Zbl 1470.34194
[9] L. Chen; M. Cao; C. Li, Bearing rigidity and formation stabilization for multiple rigid bodies in \(SE(3)\), Numer. Algebra Control Optim., 9, 257-267 (2019) · Zbl 1469.93087 · doi:10.3934/naco.2019017
[10] H. Cheng; R. Yuan, Stability of traveling wave fronts for nonlocal diffusion equation with delayed nonlocal response, Taiwanese J. Math., 20, 801-822 (2016) · Zbl 1357.35075 · doi:10.11650/tjm.20.2016.6284
[11] H. Cheng; R. Yuan, The stability of the equilibria of the Allen-Cahn equation with fractional diffusion, Appl. Anal., 98, 600-610 (2019) · Zbl 1407.35124 · doi:10.1080/00036811.2017.1399360
[12] J. Danane; K. Allali, Optimal control of an HIV model with CTL cells and latently infected cells, Numer. Algebra Control Optim., 10, 207-225 (2020) · Zbl 1444.92110 · doi:10.3934/naco.2019048
[13] A. Debbouche; D. Baleanu, Controllability of fractional evolution nonlocal impulsive quasilinear delay integro-differential systems, Comput. Math. Appl., 62, 1442-1450 (2011) · Zbl 1228.45013 · doi:10.1016/j.camwa.2011.03.075
[14] X. Ding; H. Li; Q. Yang; Y. Zhou; A. Alsaedi; F. E. Alsaadi, Stochastic stability and stabilization of \(n\)-person random evolutionary Boolean games, Appl. Math. Comput., 306, 1-12 (2017) · Zbl 1411.91084 · doi:10.1016/j.amc.2017.02.020
[15] J. Du, W. Jiang, D. Pang and A. U. K. Niazi, Controllability for a new class of fractional neutral integro-differential evolution equations with infinite delay and nonlocal conditions, Adv. Difference Equ., 2017 (2017), 22pp. · Zbl 1444.34096
[16] M. M. El-Borai, Some probability densities and fundamental solutions of fractional evolution equations, Chaos Solitons Fractals, 14, 433-440 (2002) · Zbl 1005.34051 · doi:10.1016/S0960-0779(01)00208-9
[17] F.-D. Ge; H.-C. Zhou; C.-H. Kou, Approximate controllability of semilinear evolution equations of fractional order with nonlocal and impulsive conditions via an approximating technique, Appl. Math. Comput., 275, 107-120 (2016) · Zbl 1410.93021 · doi:10.1016/j.amc.2015.11.056
[18] R. Ghanem; B. Zireg, Numerical solution of bilateral obstacle optimal control problem, where the controls and the obstacles coincide, Numer. Algebra Control Optim., 10, 275-300 (2020) · Zbl 1477.65099 · doi:10.3934/naco.2020002
[19] E. Hernández; D. O’Regan, Controllability of Volterra-Fredholm type systems in Banach spaces, J. Franklin. Inst., 346, 95-101 (2009) · Zbl 1160.93005 · doi:10.1016/j.jfranklin.2008.08.001
[20] E. Hernández; D. O’Regan; K. Balachandran, On recent developments in the theory of abstract differential equations with fractional derivatives, Nonlinear Anal., 73, 3462-3471 (2010) · Zbl 1229.34004 · doi:10.1016/j.na.2010.07.035
[21] Y. Hino, S. Murakami and T. Naito, Functional-Differential Equations with Infinite Delay, Lecture Notes in Mathematics, 1473, Springer-Verlag, Berlin, 1991. · Zbl 0732.34051
[22] J.-M. Jeong; H.-H. Roh, Approximate controllability for semilinear retarded systems, J. Math. Anal. Appl., 321, 961-975 (2006) · Zbl 1160.93311 · doi:10.1016/j.jmaa.2005.09.005
[23] S. Ji, Approximate controllability of semilinear nonlocal fractional differential systems via an approximating method, Appl. Math. Comput., 236, 43-53 (2014) · Zbl 1334.93032 · doi:10.1016/j.amc.2014.03.027
[24] J. Jia; H. Wang, A fast finite volume method for conservative space-time fractional diffusion equations discretized on space-time locally refined meshes, Comput. Math. Appl., 78, 1345-1356 (2019) · Zbl 1442.65197 · doi:10.1016/j.camwa.2019.04.003
[25] J. Jia; H. Wang; X. Zheng, A preconditioned fast finite element approximation to variable-order time-fractional diffusion equations in multiple space dimensions, Appl. Numer. Math., 163, 15-29 (2021) · Zbl 1471.65144 · doi:10.1016/j.apnum.2021.01.001
[26] R. Joice Nirmala; K. Balachandran, The controllability of nonlinear implicit fractional delay dynamical systems, Int. J. Appl. Math. Comput. Sci., 27, 501-513 (2017) · Zbl 1373.93065 · doi:10.1515/amcs-2017-0035
[27] R. Joice Nirmala; K. Balachandran; L. Rodríguez-Germa; J. J. Trujillo, Controllability of nonlinear fractional delay dynamical systems, Rep. Math. Phys., 77, 87-104 (2016) · Zbl 1378.93022 · doi:10.1016/S0034-4877(16)30007-6
[28] K. Kavitha, V. Vijayakumar and R. Udhayakumar, Results on controllability of Hilfer fractional neutral differential equations with infinite delay via measures of noncompactness, Chaos Solitons Fractals, 139 (2020), 12pp. · Zbl 1490.34091
[29] A. Kheirabadi; A. M. Vaziri; S. Effati, Linear optimal control of time delay systems via Hermite wavelet, Numer. Algebra Control Optim., 10, 143-156 (2020) · Zbl 1443.49004 · doi:10.3934/naco.2019044
[30] A. Kheirabadi; A. M. Vaziri; S. Effati, Solving optimal control problem using Hermite wavelet, Numer. Algebra Control Optim., 9, 101-112 (2019) · Zbl 1428.49036 · doi:10.3934/naco.2019008
[31] A. Kumar; D. N. Pandey, Controllability results for non densely defined impulsive fractional differential equations in abstract space, Differ. Equ. Dyn. Syst., 29, 227-237 (2021) · Zbl 1466.34069 · doi:10.1007/s12591-019-00471-1
[32] S. Kumar; N. Sukavanam, Approximate controllability of fractional order semilinear systems with bounded delay, J. Differential Equations, 252, 6163-6174 (2012) · Zbl 1243.93018 · doi:10.1016/j.jde.2012.02.014
[33] H. Li; X. Ding, A control Lyapunov function approach to feedback stabilization of logical control networks, SIAM J. Control Optim., 57, 810-831 (2019) · Zbl 1409.93055 · doi:10.1137/18M1170443
[34] H. Li; Y. Wang, Controllability analysis and control design for switched Boolean networks with state and input constraints, SIAM J. Control Optim., 53, 2955-2979 (2015) · Zbl 1320.93022 · doi:10.1137/120902331
[35] H. Li; X. Wu; J. Zhang, Numerical solution of the time-fractional sub-diffusion equation on an unbounded domain in two-dimensional space, East Asian J. Appl. Math., 7, 439-454 (2017) · Zbl 1383.65093 · doi:10.4208/eajam.031116.080317a
[36] H. Li and Y. Wu, Artificial boundary conditions for nonlinear time fractional Burgers’ equation on unbounded domains, Appl. Math. Lett., 120 (2021), 8pp. · Zbl 1524.65363
[37] H. Li; X. Xu; X. Ding, Finite-time stability analysis of stochastic switched Boolean networks with impulsive effect, Appl. Math. Comput., 347, 557-565 (2019) · Zbl 1428.93054 · doi:10.1016/j.amc.2018.11.018
[38] H. Li; Y. Zheng; F. E. Alsaadi, Algebraic formulation and topological structure of Boolean networks with state-dependent delay, J. Comput. Appl. Math., 350, 87-97 (2019) · Zbl 1419.91096 · doi:10.1016/j.cam.2018.10.003
[39] K. Li; J. Peng; J. Gao, Controllability of nonlocal fractional differential systems of order \(\alpha\in (1, 2]\) in Banach spaces, Rep. Math. Phys., 71, 33-43 (2013) · Zbl 1285.93023 · doi:10.1016/S0034-4877(13)60020-8
[40] L. Li, Z. Jiang and Z. Yin, Compact finite-difference method for 2D time-fractional convection-diffusion equation of groundwater pollution problems, Comput. Appl. Math., 39 (2020), 34pp. · Zbl 1449.65191
[41] P. Li, X. Li and J. Cao, Input-to-state stability of nonlinear switched systems via Lyapunov method involving indefinite derivative, Complexity, 2018 (2018). · Zbl 1390.93708
[42] X. Li, Further analysis on uniform stability of impulsive infinite delay differential equations, Appl. Math. Lett., 25, 133-137 (2012) · Zbl 1236.34098 · doi:10.1016/j.aml.2011.08.001
[43] X. Li; H. Li; Y. Li; X. Yang, Function perturbation impact on stability in distribution of probabilistic Boolean networks, Math. Comput. Simulation, 177, 1-12 (2020) · Zbl 1510.93237 · doi:10.1016/j.matcom.2020.04.008
[44] X. Li, Z. Liu and C. C. Tisdell, Approximate controllability of fractional control systems with time delay using the sequence method, Electron. J. Differential Equations, 2017 (2017), 11pp. · Zbl 1375.93021
[45] X. Li; D. O’Regan; H. Akca, Global exponential stabilization of impulsive neural networks with unbounded continuously distributed delays, IMA J. Appl. Math., 80, 85-99 (2015) · Zbl 1316.34079 · doi:10.1093/imamat/hxt027
[46] X. Li; J. Shen; H. Akca; R. Rakkiyappan, LMI-based stability for singularly perturbed nonlinear impulsive differential systems with delays of small parameter, Appl. Math. Comput., 250, 798-804 (2015) · Zbl 1328.34068 · doi:10.1016/j.amc.2014.10.113
[47] Y. Li; R. Zhang; Y. Zhang; B. Yang, Sliding mode control for uncertain T-S fuzzy systems with input and state delays, Numer. Algebra Control Optim., 10, 345-354 (2020) · Zbl 1478.93095 · doi:10.3934/naco.2020006
[48] J. Liang; H. Yang, Controllability of fractional integro-differential evolution equations with nonlocal conditions, Appl. Math. Comput., 254, 20-29 (2015) · Zbl 1410.93022 · doi:10.1016/j.amc.2014.12.145
[49] S. Liang; G. Zhao; H. Li; X. Ding, Structural stability analysis of gene regulatory networks modeled by Boolean networks, Math. Methods Appl. Sci., 42, 2221-2230 (2019) · Zbl 1414.37016 · doi:10.1002/mma.5488
[50] L. Lin, Y. Liu and D. Zhao, Study on implicit-type fractional coupled system with integral boundary conditions, Mathematics, 9 (2021).
[51] B. Liu and Y. Liu, Positive solutions of a two-point boundary value problem for singular fractional differential equations in Banach space, J. Funct. Spaces Appl., 2013 (2013), 9pp. · Zbl 1275.34009
[52] L. Liu; S. Lu; C. Han; C. Li; Z. Feng, Fault estimation and optimization for uncertain disturbed singularly perturbed systems with time-delay, Numer. Algebra Control Optim., 10, 367-379 (2020) · Zbl 1478.93435 · doi:10.3934/naco.2020008
[53] M. Liu, S. Li, X. Li, L. Jin, C. Yi and Z. Huang, Intelligent controllers for multirobot competitive and dynamic tracking, Complexity, 2018 (2018). · Zbl 1407.93264
[54] X. Liu; Z. Liu; M. Bin, Approximate controllability of impulsive fractional neutral evolution equations with Riemann-Liouville fractional derivatives, J. Comput. Anal. Appl., 17, 468-485 (2014) · Zbl 1292.93030
[55] Y. Liu, Bifurcation techniques for a class of boundary value problems of fractional impulsive differential equations, J. Nonlinear Sci. Appl., 8, 340-353 (2015) · Zbl 1319.34013 · doi:10.22436/jnsa.008.04.07
[56] Y. Liu, Positive solutions using bifurcation techniques for boundary value problems of fractional differential equations, Abstr. Appl. Anal., 2013 (2013), 7pp. · Zbl 1303.34018
[57] Y. Liu and D. O’Regan, Controllability of impulsive functional differential systems with nonlocal conditions, Electron. J. Differential Equations, 2013 (2013), 10pp. · Zbl 1288.34073
[58] Y. Liu and H. Yu, Bifurcation of positive solutions for a class of boundary value problems of fractional differential inclusions, Abstr. Appl. Anal., 2013 (2013), 8pp. · Zbl 1285.34010
[59] Y. Liu; Y. Zheng; H. Li; F. E. Alsaadi; B. Ahmad, Control design for output tracking of delayed Boolean control networks, J. Comput. Appl. Math., 327, 188-195 (2018) · Zbl 1369.93288 · doi:10.1016/j.cam.2017.06.016
[60] Z. Liu; M. Bin, Approximate controllability of impulsive Riemann-Liouville fractional equations in Banach spaces, J. Integral Equations Appl., 26, 527-551 (2014) · Zbl 1303.93041 · doi:10.1216/JIE-2014-26-4-527
[61] Z. Liu; X. Li; J. Sun, Controllability of nonlinear fractional impulsive evolution systems, J. Integral Equations Appl., 25, 395-406 (2013) · Zbl 1277.93019 · doi:10.1216/JIE-2013-25-3-395
[62] X. Lv, X. Li, J. Cao and P. Duan, Exponential synchronization of neural networks via feedback control in complex environment, Complexity, 2018 (2018). · Zbl 1398.93126
[63] T. Ma; B. Yan, The multiplicity solutions for nonlinear fractional differential equations of Riemann-Liouville type, Fract. Calc. Appl. Anal., 21, 801-818 (2018) · Zbl 1405.34011 · doi:10.1515/fca-2018-0042
[64] N. I. Mahmudov, Partial-approximate controllability of nonlocal fractional evolution equations via approximating method, Appl. Math. Comput., 334, 227-238 (2018) · Zbl 1427.93040 · doi:10.1016/j.amc.2018.03.116
[65] J. Mao and D. Zhao, Multiple positive solutions for nonlinear fractional differential equations with integral boundary value conditions and a parameter, J. Funct. Spaces, 2019 (2019), 11pp. · Zbl 1420.34021
[66] X.-Y. Meng; Y.-Q. Wu; J. Li, Bifurcation analysis of a singular nutrient-plankton-fish model with taxation, protected zone and multiple delays, Numer. Algebra Control Optim., 10, 391-423 (2020) · Zbl 1478.92247 · doi:10.3934/naco.2020010
[67] G. M. Mophou, Existence and uniqueness of mild solution to impulsive fractional differential equations, Nonlinear Anal., 72, 1604-1615 (2010) · Zbl 1187.34108 · doi:10.1016/j.na.2009.08.046
[68] P. Muthukumar; K. Thiagu, Existence of solutions and approximate controllability of fractional nonlocal neutral impulsive stochastic differential equations of order \(1<q<2\) with infinite delay and Poisson jumps, J. Dyn. Control Syst., 23, 213-235 (2017) · Zbl 1370.34136 · doi:10.1007/s10883-015-9309-0
[69] K. Naito, Controllability of semilinear control systems dominated by the linear part, SIAM J. Control Optim., 25, 715-722 (1987) · Zbl 0617.93004 · doi:10.1137/0325040
[70] N. Najib; N. Bachok; N. M. Arifin; F. M. Ali, Stability analysis of stagnation point flow in nanofluid over stretching/shrinking sheet with slip effect using Buongiorno’s model, Numer. Algebra Control Optim., 9, 423-431 (2019) · Zbl 1434.76032 · doi:10.3934/naco.2019041
[71] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, 44, Springer-Verlag, New York, 1983. · Zbl 0516.47023
[72] D. Peng, X. Li, R. Rakkiyappan and Y. Ding, Stabilization of stochastic delayed systems: Event-triggered impulsive control, Appl. Math. Comput., 401 (2021), 12pp. · Zbl 1508.93321
[73] J. Prüss, Evolutionary Integral Equations and Applications, Monographs in Mathematics, 87, Birkhäuser Verlag, Basel, 1993. · Zbl 0784.45006
[74] T. Qi, Y. Liu and Y. Cui, Existence of solutions for a class of coupled fractional differential systems with nonlocal boundary conditions, J. Funct. Spaces, 2017 (2017), 9pp. · Zbl 1375.34013
[75] T. Qi; Y. Liu; Y. Zou, Existence result for a class of coupled fractional differential systems with integral boundary value conditions, J. Nonlinear Sci. Appl., 10, 4034-4045 (2017) · Zbl 1412.34082 · doi:10.22436/jnsa.010.07.52
[76] R. Qian; R. Hu; Y.-P. Fang, Local smooth representation of solution sets in parametric linear fractional programming problems, Numer. Algebra Control Optim., 9, 45-52 (2019) · Zbl 1434.90200 · doi:10.3934/naco.2019004
[77] J. Qiao; L. Yang; J. Yao, Passive control for a class of nonlinear systems by using the technique of adding a power integrator, Numer. Algebra Control Optim., 10, 381-389 (2020) · Zbl 1478.93475 · doi:10.3934/naco.2020009
[78] H. Qin, Z. Gu, Y. Fu and T. Li, Existence of mild solutions and controllability of fractional impulsive integrodifferential systems with nonlocal conditions, J. Funct. Spaces, 2017 (2017), 11pp. · Zbl 1377.45008
[79] H. Qin, J. Liu and X. Zuo, Controllability problem for fractional integrodifferential evolution systems of mixed type with the measure of noncompactness, J. Inequal. Appl., 2014 (2014), 15pp. · Zbl 1332.34011
[80] H. Qin, X. Zuo and J. Liu, Existence and controllability results for fractional impulsive integrodifferential systems in Banach spaces, Abstr. Appl. Anal., 2013 (2013), 12pp. · Zbl 1291.34131
[81] M. M. Raja, V. Vijayakumar, R. Udhayakumar and Y. Zhou, A new approach on the approximate controllability of fractional differential evolution equations of order \(1<r<2\) in Hilbert spaces, Chaos Solitons Fractals, 141 (2020), 10pp. · Zbl 1496.34021
[82] R. Sakthivel; R. Ganesh; Y. Ren; S. M. Anthoni, Approximate controllability of nonlinear fractional dynamical systems, Commun. Nonlinear Sci. Numer. Simul., 18, 3498-3508 (2013) · Zbl 1344.93019 · doi:10.1016/j.cnsns.2013.05.015
[83] R. Sakthivel; Y. Ren; N. I. Mahmudov, On the approximate controllability of semilinear fractional differential systems, Comput. Math. Appl., 62, 1451-1459 (2011) · Zbl 1228.34093 · doi:10.1016/j.camwa.2011.04.040
[84] R. Sakthivel; S. Suganya; S. M. Anthoni, Approximate controllability of fractional stochastic evolution equations, Comput. Math. Appl., 63, 660-668 (2012) · Zbl 1238.93099 · doi:10.1016/j.camwa.2011.11.024
[85] T. Sathiyaraj, M. Fečkan and J. Wang, Null controllability results for stochastic delay systems with delayed perturbation of matrices, Chaos Solitons Fractals, 138 (2020), 11pp. · Zbl 1490.93017
[86] X.-B. Shu; Y. Shi, A study on the mild solution of impulsive fractional evolution equations, Appl. Math. Comput., 273, 465-476 (2016) · Zbl 1410.34031 · doi:10.1016/j.amc.2015.10.020
[87] A. Shukla; R. Patel, Controllability results for fractional semilinear delay control systems, J. Appl. Math. Comput., 65, 861-875 (2021) · Zbl 1478.93064 · doi:10.1007/s12190-020-01418-4
[88] A. Shukla; N. Sukavanam; D. N. Pandey, Approximate controllability of semilinear fractional control systems of order \(\alpha\in(1, 2]\) with infinite delay, Mediterr. J. Math., 13, 2539-2550 (2016) · Zbl 1355.34117 · doi:10.1007/s00009-015-0638-8
[89] A. Shukla; N. Sukavanam; D. N. Pandey, Approximate controllability of semilinear system with state delay using sequence method, J. Franklin Inst., 352, 5380-5392 (2015) · Zbl 1395.93119 · doi:10.1016/j.jfranklin.2015.08.019
[90] N. Sukavanam, Approximate controllability of semilinear control system with growing nonlinearity, in Mathematical Theory of Control, Lecture Notes in Pure and Appl. Math., 142, Dekker, New York, 1993,353-357. · Zbl 0790.93020
[91] Y.-F. Sun; Z. Zeng; J. Song, Quasilinear iterative method for the boundary value problem of nonlinear fractional differential equation, Numer. Algebra Control Optim., 10, 157-164 (2020) · Zbl 1447.34024 · doi:10.3934/naco.2019045
[92] Z. Sun; T. Sugie, Identification of Hessian matrix in distributed gradient-based multi-agent coordination control systems, Numer. Algebra Control Optim., 9, 297-318 (2019) · Zbl 1422.93011 · doi:10.3934/naco.2019020
[93] I. Tarnove, A controllability problem for nonlinear systems, in Mathematical Theory of Control, Academic Press, New York, 1967, 170-179. · Zbl 0214.40603
[94] Y. Tian, Some results on the eigenvalue problem for a fractional elliptic equation, Bound. Value. Probl., 2019 (2019), 11pp. · Zbl 1513.35411
[95] Y. Tian and S. Zhao, Existence of solutions for perturbed fractional equations with two competing weighted nonlinear terms, Bound. Value. Probl., 2018 (2018), 16pp. · Zbl 1499.35687
[96] C. C. Travis; G. F. Webb, Cosine families and abstract nonlinear second order differential equations, Acta Math. Acad. Sci. Hungar., 32, 75-96 (1978) · Zbl 0388.34039 · doi:10.1007/BF01902205
[97] R. Triggiani, On the lack of exact controllability for mild solutions in Banach spaces, J. Math. Anal. Appl., 50, 438-446 (1975) · Zbl 0305.93013 · doi:10.1016/0022-247X(75)90033-5
[98] F. Wang, Z. Zhang and Z. Zhou, A spectral Galerkin approximation of optimal control problem governed by fractional advection-diffusion-reaction equations, J. Comput. Appl. Math., 386 (2021), 16pp. · Zbl 1456.49026
[99] J. Wang; Z. Fan; Y. Zhou, Nonlocal controllability of semilinear dynamic systems with fractional derivative in Banach spaces, J. Optim. Theory Appl., 154, 292-302 (2012) · Zbl 1252.93028 · doi:10.1007/s10957-012-9999-3
[100] J. Wang; Y. Zhou, Complete controllability of fractional evolution systems, Commun. Nonlinear Sci. Numer. Simul., 17, 4346-4355 (2012) · Zbl 1248.93029 · doi:10.1016/j.cnsns.2012.02.029
[101] Y. Wang, Y. Liu and Y. Cui, Infinitely many solutions for impulsive fractional boundary value problem with \(p\)-Laplacian, Bound. Value Probl., 2018 (2018), 16pp. · Zbl 1499.34162
[102] Y. Wang, Y. Liu and Y. Cui, Multiple sign-changing solutions for nonlinear fractional Kirchhoff equations, Bound. Value Probl., 2018 (2018), 21pp. · Zbl 1499.35690
[103] Y. Wang, Y. Liu and Y. Cui, Multiple solutions for a nonlinear fractional boundary value problem via critical point theory, J. Funct. Spaces, 2017 (2017), 8pp. · Zbl 1381.34026
[104] H.-Z. Wei; X. Zuo; C.-R. Chen, Unified vector quasiequilibrium problems via improvement sets and nonlinear scalarization with stability analysis, Numer. Algebra Control Optim., 10, 107-125 (2020) · Zbl 1439.49048 · doi:10.3934/naco.2019036
[105] T. Wei; X. Xie; X. Li, Input-to-state stability of delayed reaction-diffusion neural networks with multiple impulses, AIMS Math., 6, 5786-5800 (2021) · Zbl 1484.93019 · doi:10.3934/math.2021342
[106] X. Xu; H. Li; Y. Li; F. E. Alsaadi, Output tracking control of Boolean control networks with impulsive effects, Math. Methods Appl. Sci., 41, 1554-1564 (2018) · Zbl 1383.93026 · doi:10.1002/mma.4685
[107] X. Xu; Y. Liu; H. Li; F. E. Alsaadi, Robust set stabilization of Boolean control networks with impulsive effects, Nonlinear Anal. Model. Control, 23, 553-567 (2018) · Zbl 1416.93162 · doi:10.15388/NA.2018.4.6
[108] D. Yang; X. Li; J. Qiu, Output tracking control of delayed switched systems via state-dependent switching and dynamic output feedback, Nonlinear Anal. Hybrid Syst., 32, 294-305 (2019) · Zbl 1425.93149 · doi:10.1016/j.nahs.2019.01.006
[109] D. Yang; X. Li; J. Shen; Z. Zhou, State-dependent switching control of delayed switched systems with stable and unstable modes, Math. Methods Appl. Sci., 41, 6968-6983 (2018) · Zbl 1404.34083 · doi:10.1002/mma.5209
[110] H. Yang and Y. Zhao, Controllability of fractional evolution systems of Sobolev type via resolvent operators, Bound. Value Probl., 2020 (2020), 13pp. · Zbl 1496.34097
[111] Q. Yang, H. Li and Y. Liu, Pinning control design for feedback stabilization of constrained Boolean control networks, Adv. Difference Equ., 2016 (2016), 16pp. · Zbl 1419.93040
[112] X. Yang; X. Li; Q. Xi; P. Duan, Review of stability and stabilization for impulsive delayed systems, Math. Biosci. Eng., 15, 1495-1515 (2018) · Zbl 1416.93159 · doi:10.3934/mbe.2018069
[113] A. Zare; M. Keyanpour; M. Salahi, On fractional quadratic optimization problem with two quadratic constraints, Numer. Algebra Control Optim., 10, 301-315 (2020) · Zbl 1476.90323 · doi:10.3934/naco.2020003
[114] D. Zhang and Y. Liang, Existence and controllability of fractional evolution equation with sectorial operator and impulse, Adv. Difference Equ., 2018 (2018), 12pp. · Zbl 1446.34020
[115] L. Zhang; Z. Zhou, Spectral Galerkin approximation of optimal control problem governed by Riesz fractional differential equation, Appl. Numer. Math., 143, 247-262 (2019) · Zbl 1425.49018 · doi:10.1016/j.apnum.2019.04.003
[116] X. Zhang, C. Zhu and C. Yuan, Approximate controllability of impulsive fractional stochastic differential equations with state-dependent delay, Adv. Difference Equ., 2015 (2015), 12pp. · Zbl 1343.93019
[117] D. Zhao, New results on controllability for a class of fractional integrodifferential dynamical systems with delay in Banach spaces, Fractal Fract., 5, 1-18 (2021) · doi:10.3390/fractalfract5030089
[118] D. Zhao and Y. Liu, Eigenvalues of a class of singular boundary value problems of impulsive differential equations in Banach spaces, J. Funct. Spaces, 2014 (2014), 12pp. · Zbl 1292.34031
[119] D. Zhao and Y. Liu, Multiple positive solutions for nonlinear fractional boundary value problems, The Scientific World Journal, 2013 (2013).
[120] D. Zhao; Y. Liu, Positive solutions for a class of fractional differential coupled system with integral boundary value conditions, J. Nonlinear Sci. Appl., 9, 2922-2942 (2016) · Zbl 1343.34032 · doi:10.22436/jnsa.009.05.86
[121] D. Zhao; Y. Liu, Twin solutions to semipositone boundary value problems for fractional differential equations with coupled integral boundary conditions, J. Nonlinear Sci. Appl., 10, 3544-3565 (2017) · Zbl 1412.34049 · doi:10.22436/jnsa.010.07.16
[122] D. Zhao; Y. Liu; X. Li, Controllability for a class of semilinear fractional evolution systems via resolvent operators, Commun. Pur. Appl. Anal., 18, 455-478 (2019) · Zbl 06969373 · doi:10.3934/cpaa.2019023
[123] D. Zhao and J. Mao, New controllability results of fractional nonlocal semilinear evolution systems with finite delay, Complexity, 2020 (2020). · Zbl 1467.34080
[124] D. Zhao; J. Mao, Positive solutions for a class of nonlinear singular fractional differential systems with Riemann-Stieltjes coupled integral boundary value conditions, Symmetry, 13, 1-19 (2021) · doi:10.3390/sym13010107
[125] G. Zhao; S. Liang; H. Li, Stability analysis of activation-inhibition Boolean networks with stochastic function structures, Math. Methods Appl. Sci., 43, 8694-8705 (2020) · Zbl 1453.93241 · doi:10.1002/mma.6529
[126] Y. Zhao, X. Li and J. Cao, Global exponential stability for impulsive systems with infinite distributed delay based on flexible impulse frequency, Appl. Math. Comput., 386 (2020), 10pp. · Zbl 1497.34104
[127] H. X. Zhou, Approximate controllability for a class of semilinear abstract equations, SIAM J. Control Optim., 22, 551-565 (1983) · Zbl 0516.93009 · doi:10.1137/0321033
[128] Y. Zhou; J. W. He, New results on controllability of fractional evolution systems with order \(\alpha\in (1, 2)\), Evol. Equ. Control Theory, 10, 491-509 (2021) · Zbl 1481.34081 · doi:10.3934/eect.2020077
[129] Z. Zhou; W. Gong, Finite element approximation of optimal control problems governed by time fractional diffusion equation, Comput. Math. Appl., 71, 301-318 (2016) · Zbl 1443.65235 · doi:10.1016/j.camwa.2015.11.014
[130] Z. J. Zhou; N. N. Yan, A survey of numerical methods for convection-diffusion optimal control problems, J. Numer. Math., 22, 61-85 (2014) · Zbl 1294.65072 · doi:10.1515/jnum-2014-0003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.