×

Existence of solutions for perturbed fractional equations with two competing weighted nonlinear terms. (English) Zbl 1499.35687

Summary: This paper deals with a perturbed nonlocal equation of fractional Laplacian type involving two competing nonlinear terms with weights \(f\) and \(h\). Under two kinds of integrability conditions on the ratio of \(f\) to \(h\), we show some different existence results in this setting by using variational methods. Our results are extension of some problems studied by G. Carboni and D. Mugnai [J. Differ. Equations 262, No. 3, 2393–2413 (2017; Zbl 1352.35217)] and M. Xiang et al. [J. Differ. Equations 260, No. 2, 1392–1413 (2016; Zbl 1332.35387)].

MSC:

35R11 Fractional partial differential equations
35A01 Existence problems for PDEs: global existence, local existence, non-existence
35J20 Variational methods for second-order elliptic equations
35J60 Nonlinear elliptic equations

References:

[1] Xiang, M.Q., Zhang, B.L., Rǎdulescu, V.: Existence of solutions for perturbed fractional p-Laplacian equations. J. Differ. Equ. 260(2), 1392-1413 (2016) · Zbl 1332.35387 · doi:10.1016/j.jde.2015.09.028
[2] Di Nezza, E., Palatucci, G., Valdinoci, E.: Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math. 136, 521-573 (2012) · Zbl 1252.46023 · doi:10.1016/j.bulsci.2011.12.004
[3] Applebaum, D.: Lévy Processes and Stochastic Calculus, 2nd edn. Cambridge Studies in Advanced Mathematics, vol. 116. Cambridge University Press, Cambridge (2009) · Zbl 1200.60001 · doi:10.1017/CBO9780511809781
[4] Bertoin, J.: Lévy Processes. Cambridge Tracts in Mathematics, vol. 121. Cambridge University Press, Cambridge (1996) · Zbl 0861.60003
[5] Laskin, N.: Fractional quantum mechanics and Lévy path integrals. Phys. Lett. A 268(4), 298-305 (2000) · Zbl 0948.81595 · doi:10.1016/S0375-9601(00)00201-2
[6] Metzler, R., Klafter, J.: The restaurant at the end of random walk: recent developments in the description of anomalous transport by fractional dynamics. J. Phys. A 37(3), 161-208 (2004) · Zbl 1075.82018 · doi:10.1088/0305-4470/37/31/R01
[7] Ambrosetti, A., Brézis, H., Cerami, G.: Combined effects of concave and convex nonlinearities in some elliptic problems. J. Funct. Anal. 122(2), 519-543 (1994) · Zbl 0805.35028 · doi:10.1006/jfan.1994.1078
[8] Charro, F., Colorado, E., Peral, I.: Multiplicity of solutions to uniformly elliptic fully nonlinear equations with concave-convex right-hand side. J. Differ. Equ. 246(11), 4221-4248 (2009) · Zbl 1171.35049 · doi:10.1016/j.jde.2009.01.013
[9] Colorado, E., Peral, I.: Semilinear elliptic problems with mixed Dirichlet-Neumann boundary conditions. J. Funct. Anal. 199(2), 468-507 (2003) · Zbl 1034.35041 · doi:10.1016/S0022-1236(02)00101-5
[10] Alama, S., Tarantello, G.: Elliptic problems with nonlinearities indefinite in sign. J. Funct. Anal. 141, 159-215 (1996) · Zbl 0860.35032 · doi:10.1006/jfan.1996.0125
[11] Rǎdulescu, V., Repovš, D.: Combined effects in nonlinear problems arising in the study of anisotropic continuous media. Nonlinear Anal. 75(3), 1524-1530 (2012) · Zbl 1237.35043 · doi:10.1016/j.na.2011.01.037
[12] Autuori, G., Pucci, P.: Existence of entire solutions for a class of quasilinear elliptic problems. NoDEA Nonlinear Differ. Equ. Appl. 20(3), 977-1009 (2013) · Zbl 1273.35137 · doi:10.1007/s00030-012-0193-y
[13] Autuori, G., Pucci, P.: Elliptic problems involving the fractional Laplacian in RN \(\mathbb{R}^N\). J. Differ. Equ. 255(8), 2340-2362 (2013) · Zbl 1284.35171 · doi:10.1016/j.jde.2013.06.016
[14] Carboni, G., Mugnai, D.: On some fractional equations with convex-concave and logistic-type nonlinearities. J. Differ. Equ. 262(3), 2393-2413 (2017) · Zbl 1352.35217 · doi:10.1016/j.jde.2016.10.045
[15] Xiang, M.Q., Zhang, B.L., Rǎdulescu, V.: Multiplicity of solutions for a class of quasilinear Kirchhoff system involving the fractional p-Laplacian. Nonlinearity 29, 3186-3205 (2016) · Zbl 1349.35413 · doi:10.1088/0951-7715/29/10/3186
[16] Pan, N., Zhang, B.L., Cao, J.: Degenerate Kirchhoff-type diffusion problems involving the fractional p-Laplacian. Nonlinear Anal., Real World Appl. 27, 56-70 (2017) · Zbl 1394.35563 · doi:10.1016/j.nonrwa.2017.02.004
[17] Pucci, P., Xiang, M.Q., Zhang, B.L.: Existence and multiplicity of entire solutions for fractional p-Kirchhoff equations. Adv. Nonlinear Anal. 5, 27-55 (2016) · Zbl 1334.35395
[18] Liang, S.H., Repovš, D., Zhang, B.L.: On the fractional Schrödinger-Kirchhoff equations with electromagnetic fields and critical nonlinearity. Comput. Math. Appl. 75(5), 1778-1794 (2018) · Zbl 1409.78002 · doi:10.1016/j.camwa.2017.11.033
[19] Xiang, M., Zhang, B., Zhang, X.: A nonhomogeneous fractional p-Kirchhoff type problem involving critical exponent in RN \(\mathbb{R}^N\). Adv. Nonlinear Stud. 17, 611-640 (2017) · Zbl 1372.35348 · doi:10.1515/ans-2016-6002
[20] Xiang, M.Q., Molica Bisci, G., Tian, G.H., Zhang, B.L.: Infinitely many solutions for the stationary Kirchhoff problems involving the fractional p-Laplacian. Nonlinearity 29, 357-374 (2016) · Zbl 1349.35413 · doi:10.1088/0951-7715/29/10/3186
[21] Caponi, M., Pucci, P.: Existence theorems for entire solutions of stationary Kirchhoff fractional p-Laplacian equations. Ann. Mat. Pura Appl. 195, 2099-2129 (2016) · Zbl 1359.35212 · doi:10.1007/s10231-016-0555-x
[22] Zhang, X., Zhang, B.L., Xiang, M.Q.: Ground states for fractional Schrödinger equations involving a critical nonlinearity. Adv. Nonlinear Anal. 5(3), 293-314 (2016) · Zbl 1346.35224
[23] Zhang, X., Zhang, B.L., Repovš, D.: Existence and symmetry of solutions for critical fractional Schrödinger equations with bounded potentials. Nonlinear Anal. 142, 48-68 (2016) · Zbl 1338.35013 · doi:10.1016/j.na.2016.04.012
[24] Díaz, J.I., Gómez-Castro, D., Vázquez, J.L.: The fractional Schrödinger equation with general nonnegative potentials. The weighted space approach. Nonlinear Anal. (to appear). https://doi.org/10.1016/j.na.2018.05.001 · Zbl 1402.35093
[25] Giacomoni, J., Mukherjee, T., Sreenadh, K.: Positive solutions of fractional elliptic equation with critical and singular nonlinearity. Adv. Nonlinear Anal. 6(3), 327-354 (2017) · Zbl 1386.35438
[26] Giacomoni, J., Kumar Mishra, P., Sreenadh, K.: Fractional elliptic equations with critical exponential nonlinearity. Adv. Nonlinear Anal. 5(1), 57-74 (2016) · Zbl 1334.35388
[27] Abatangelo, N.: Very large solutions for the fractional Laplacian: towards a fractional Keller-Osserman condition. Adv. Nonlinear Anal. 6(4), 383-405 (2017) · Zbl 1373.35007
[28] Mosconi, S., Perera, K., Squassina, M., Yang, Y.: The Brézis-Nirenberg problem for the fractional p-Laplacian. Calc. Var. Partial Differ. Equ. 55, 1-25 (2016) · Zbl 1361.35198 · doi:10.1007/s00526-016-1035-2
[29] Faria, L., Miyagaki, O., Pereira, F., Squassina, M., Zhang, C.: The Brézis-Nirenberg problem for nonlocal systems. Adv. Nonlinear Anal. 5(1), 85-103 (2016) · Zbl 1343.47054
[30] Caffarelli, L., Silvestre, L.: An extension problem related to the fractional Laplacian. Commun. Partial Differ. Equ. 32(8), 1245-1260 (2007) · Zbl 1143.26002 · doi:10.1080/03605300600987306
[31] Molica Bisci, G., Rǎdulescu, V., Servadei, R.: Variational Methods for Nonlocal Fractional Problems. Encyclopedia of Mathematics and Its Applications, vol. 162. Cambridge University Press, Cambridge (2016) · Zbl 1356.49003 · doi:10.1017/CBO9781316282397
[32] Berger, M.: Nonlinearity and Functional Analysis. Academic Press, New York (1977) · Zbl 0368.47001
[33] Brändle, C., Colorado, E., De Pablo, A.: A concave-convex elliptic problem involving the fractional Laplacian. Proc. R. Soc. Edinb., Sect. A 143(1), 39-71 (2013) · Zbl 1290.35304 · doi:10.1017/S0308210511000175
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.