×

Bifurcation analysis of a singular nutrient-plankton-fish model with taxation, protected zone and multiple delays. (English) Zbl 1478.92247

Summary: A differential algebraic nutrient-plankton-fish model with taxation, free fishing zone, protected zone and multiple delays is investigated in this paper. First, the conditions of existence and control of singularity induced bifurcation are given by regarding economic interest as bifurcation parameter. Meanwhile, the existence of Hopf bifurcations are investigated when migration rates, taxation and the cost per unit harvest are taken as bifurcation parameters respectively. Next, the local stability of the interior equilibrium, existence and properties of Hopf bifurcation are discussed in the different cases of five delays. Furthermore, the optimal tax policy is obtained by using Pontryagin’s maximum principle. Finally, some numerical simulations are presented to demonstrate analytical results.

MSC:

92D40 Ecology
34A09 Implicit ordinary differential equations, differential-algebraic equations
91B76 Environmental economics (natural resource models, harvesting, pollution, etc.)
34H05 Control problems involving ordinary differential equations
34C23 Bifurcation theory for ordinary differential equations
Full Text: DOI

References:

[1] K. Chakraborty; M. Chakraboty; T. K. Kar, Bifurcation and control of a bioeconomic model of a prey-predator system with a time delay, Nonlinear Anal. Hybrid Syst., 5, 613-625 (2011) · Zbl 1245.92060 · doi:10.1016/j.nahs.2011.05.004
[2] K. Chakraborty; S. Jana; T. K. Kar, Effort dynamics of a delay-induced prey-predator system with reserve, Nonlinear Dyn., 70, 1805-1829 (2012) · Zbl 1269.92064 · doi:10.1007/s11071-012-0575-z
[3] S. Chakraborty; S. Roy; J. Chattopadhyay, Nutrient-limited toxin production and the dynamics of two phytoplankton in culture media: A mathematical model, Ecol. Model., 213, 191-201 (2008)
[4] C. W. Clark, Mathematical Bioeconomics: The Optimal Management of Renewable Resources, Wiley, New York, 1976. · Zbl 0364.90002
[5] C. W. Clark, Bioeconomic Modelling and Fisheries Management, Wiley, New York, 1985.
[6] L. Dai, Singular Control System, Springer, New York, 1989. · Zbl 0669.93034
[7] K. Das and S. Ray, Effect of delay on nutrient cycling in phytoplankton-zooplankton interactions in estuarine system, Ecol. Model., 215 (2008), 69-76.
[8] T. Das, R. N. Mukherjee and K. Chaudhuri, Harvesting of a prey-predator fishery in the presence of toxicity, Appl. Math. Model., 33 (2009), 2282-2292. · Zbl 1185.91120
[9] T. Faria, Stability and bifurcation for a delayed predator-prey model and the effect of diffusion, J. Math. Anal. Appl., 254 (2001), 433-463. · Zbl 0973.35034
[10] H. S. Gordon, The economic theory of a common-property resource: The fishery, J. P. Eco., 62, 124-142 (1954) · Zbl 1213.91039 · doi:10.1007/s00199-010-0520-7
[11] J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Springer, New York, 1983. · Zbl 0515.34001
[12] R. P. Gupta, M. Banerjee and P. Chandra, Period doubling cascades of prey-predator model with nonlinear harvesting and control of over exploitation through taxation, Commun. Nonlinear Sci. Numer. Simulat., 19 (2014), 2382-2405. · Zbl 1457.92138
[13] A. Hajihosseini; G. R. R. Lamooki; B. Beheshti; F. Maleki, The Hopf bifurcation analysis on a time-delayed recurrent neural network in the frequency domain, Neurocomputing, 73, 991-1005 (2010)
[14] J. K. Hale, Theory of Functional Differential Equations, Springer, New York, 1977. · Zbl 0352.34001
[15] B. D. Hassard, N. D. Kazarinoff and Y. H. Wan, Theory and Applications of Hopf Bifurcation, Cambridge University Press, Cambridge, 1981. · Zbl 0474.34002
[16] X. Z. He and S. G. Ruan, Global stability in chemostat-type plankton models with delayed nutrient recycling, J. Math. Biol., 37 (1998), 253-271. · Zbl 0935.92034
[17] S. V. Krishna; P. D. N. Srinivasu; B. Kaymakcalan, Conservation of an ecosystem through optimal taxation, Bull. Math. Biol., 60, 569-584 (1998) · Zbl 1053.92521
[18] Y. Kuang, Delay Differential Equations with Applications in Population Dynamics, Academic Press, Boston, 1993. · Zbl 0777.34002
[19] T. C. Liao, H. G. Yu and M. Zhao, Dynamics of a delayed phytoplankton-zooplankton system with Crowley-Martin functional response, Adv. Difference Equ., 2017 (2017), 5-35. · Zbl 1422.37068
[20] C. Liu, Q. L. Zhang and X. D. Duan, Dynamical behavior in a harvested differential-algebraic prey-predator model with discrete time delay and stage structure, J. Franklin Inst., 346 (2009), 1038-1059. · Zbl 1185.49043
[21] C. Liu, Q. L. Zhang, J. Huang and W. S. Tang, Dynamical analysis and control in a delayed differential-algebraic bioeconomic model with stage structure and diffusion, Int. J. Biomath., 5 (2012), 1-31. · Zbl 1297.92091
[22] W. Liu, C. J. Fu and B. S. Chen, Hopf bifurcation for a predator-prey biological economic system with Holling type Ⅱ functional response, J. Franklin Inst., 348 (2011), 1114-1127. · Zbl 1225.34055
[23] W. M. Liu, Criterion of Hopf bifurcations without using eigenvalues, J. Math. Anal. Appl., 182, 250-256 (1994) · Zbl 0794.34033 · doi:10.1006/jmaa.1994.1079
[24] A. J. Lotka, Elements of Mathematical Biology, Econometrica, New York, 1956. · Zbl 0074.14404
[25] Y. F. Lv, R. Yuan and Y. Z. Pei, Stable coexistence mediated by specialist harvesting in a two zooplankton-phytoplankton system, Appl. Math. Model., 37 (2013), 9012-9030. · Zbl 1438.92072
[26] X. Y. Meng, H. F. Huo and X. B. Zhang, Stability and global Hopf bifurcation in a LeslieGower predator-prey model with stage structure for prey, J. Appl. Math. Comput., 60 (2019), 1-25. · Zbl 1422.34243
[27] X. Y. Meng and J. G. Wang, Analysis of a delayed diffusive model with Beddington- DeAngelis functional response, Int. J. Biomathematics, 12 (2019), 1950047 (24 pages). · Zbl 1418.35030
[28] X. Y. Meng and Y. Q. Wu, Bifurcation and control in a singular phytoplankton- zooplanktonfish model with nonlinear fish harvesting and taxation, Int. J. Bifurc. Chaos, 28 (2018), 1850042. · Zbl 1388.34075
[29] X. Y. Meng; J. Li, Stability and Hopf bifurcation analysis of a delayed phytoplankton-zooplankton model with Allee effect and linear harvesting, Math. Biosci. Eng., 17, 1973-2002 (2020) · Zbl 1470.92252
[30] O. Pardo, Global stability for a phytoplankton-nutrient system, J. Biol. Systems, 8, 195-209 (2000)
[31] S. G. Ruan; J. J. Wei, On the zero of some transcendential functions with applications to stability of delay differential equations with two delays, Dyn. Contin. Dis. Impuls. Syst. Ser. A Math. Anal., 10, 863-874 (2003) · Zbl 1068.34072
[32] T. Saha and M. Bandyopadhyay, Dynamical analysis of toxin producing phytoplankton- zooplankton interactions, Nonlinear Anal. Real. World Appl., 10 (2009), 314-332. · Zbl 1154.37384
[33] P. Santra, G. S. Mahapatra and D. Pal, Analysis of differential-algebraic prey-predator dynamical model with super predator harvesting on economic perspective, Int. J. Dyn. and Control, 4 (2016), 266-274.
[34] V. Venkatasubramani, H. Schattler and J. Zaborszky, Local bifurcations and feasibility regions in differential-algebraic systems, IEEE Trans. Automat. Control., 40 (1995), 1992-2013. · Zbl 0843.34045
[35] P. F. Wang; M. Zhao; H. G. Yu; C. J. Dai; N. Wang; B. B. Wang, Nonlinear dynamics of a marine phytoplankton-zooplankton system, Adv. Difference Equ., 2016, 212-227 (2016) · Zbl 1418.92229
[36] Y. Wang, H. B. Wang and W. H. Jiang, Stability switches and global Hopf bifurcation in a nutrient-plankton model, Nonlinear Dyn., 78 (2014), 981-994. · Zbl 1331.92138
[37] H. Xiang; Y. Y. Wang; H. F. Huo, Analysis of the binge drinking models with demographics and nonlinear infectivity on networks, J. Appl. Anal. Comput., 8, 1535-1554 (2018) · Zbl 1457.92183
[38] G. D. Zhang, B. S. Chen, L. L. Zhu and Y. Shen, Hopf bifurcation for a differential-algebraic biological economic system with time delay, Appl. Math. Comput., 218 (2012), 7717-7726. · Zbl 1238.92058
[39] G. D. Zhang, Y. Shen and B. S. Chen, Hopf bifurcation of a predator-prey system with predator harvesting and two delays, Nonlinear Dyn., 73 (2013), 2119-2131. · Zbl 1281.92076
[40] J. Z. Zhang, Z. Jin, J. R. Yan and G. Q. Sun, Stability and Hopf bifurcation in a delayed competition system, Nonlinear Anal.: Theo., Meth. Appl., 70 (2009), 658-670. · Zbl 1166.34049
[41] Y. Zhang; J. Li; Y. Jie; X. G. Yan, Optimal taxation policy for a prey-predator fishery model with reserves, Pac. J. Optim., 11, 137-155 (2015) · Zbl 1371.37146
[42] Y. Zhang, Q. L. Zhang and X. G. Yan, Complex dynamics in a singular Leslie-Gower predatorprey bioeconomic model with time delay and stochastic fluctuations, Physica A., 404 (2014), 180-191. · Zbl 1395.34077
[43] Z. Z. Zhang and M. Rehim, Global qualitative analysis of a phytoplankton-zooplankton model in the presence of toxicity, Int. J. Dynam. Control, 5 (2017), 799-810.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.