×

Complete controllability of fractional evolution systems. (English) Zbl 1248.93029

Summary: The paper is concerned with the complete controllability of fractional evolution systems without involving the compactness of characteristic solution operators introduced by us. The main techniques rely on the fractional calculus, properties of characteristic solution operators and fixed-point theorems. Since we do not assume that the characteristic solution operators are compact, our theorems guarantee the effectiveness of controllability results in the infinite dimensional spaces.

MSC:

93B05 Controllability
34A08 Fractional ordinary differential equations
47H10 Fixed-point theorems
Full Text: DOI

References:

[1] Ahmed, N. U., Dynamic systems and control with applications (2006), World Scientific: World Scientific Hackensack, NJ · Zbl 1127.93001
[2] Abada, N.; Benchohra, M.; Hammouche, H., Existence and controllability results for nondensely defined impulsive semilinear functional differential inclusions, J Differ Equat, 246, 3834-3863 (2009) · Zbl 1171.34052
[3] Balachandran, K.; Sakthivel, R., Controllability of functional semilinear integrodifferential systems in Banach spaces, J Math Anal Appl, 225, 447-457 (2001) · Zbl 0982.93018
[4] Balachandran, K.; Sakthivel, R., Controllability of integrodifferential systems in Banach spaces, Appl Math Comput, 118, 63-71 (2001) · Zbl 1034.93005
[5] Balachandran, K.; Anandhi, E. R., Controllability of neutral functional integrodifferential infinite delay systems in Banach spaces, Taiwan J Math, 8, 689-702 (2004) · Zbl 1072.93004
[6] Benchohra, M.; Ouahab, A., Controllability results for functional semilinear differential inclusions in Fréchet spaces, Nonlinear Anal, 61, 405-423 (2005) · Zbl 1086.34062
[7] Benchohra, M.; Góriewicz, L.; Ntouyas, S. K.; Ouahab, A., Controllability results for nondensely defined semilinear functional differential equations, Z Anal Ihre Anwend, 25, 311-325 (2006) · Zbl 1101.93007
[8] Chang, Y. K.; Chalishajar, D. N., Controllability of mixed Volterra-Fredholm-type integro-differential inclusions in Banach spaces, J Franklin Inst, 345, 499-507 (2008) · Zbl 1167.93007
[9] Chang, Y. K.; Nieto, J. J.; Li, W. S., Controllability of semilinear differential systems with nonlocal initial conditions in Banach spaces, J Optim Theory Appl, 142, 267-273 (2009) · Zbl 1178.93029
[10] Chukwu, E. N.; Lenhart, S. M., Controllability questions for nonlinear systems in abstract spaces, J Optim Theory Appl, 68, 437-462 (1991) · Zbl 0697.49040
[11] Chalishajar, D. N., Controllability of mixed Volterra-Fredholm-type integro-differential systems in Banach space, J Franklin Inst, 344, 12-21 (2007) · Zbl 1119.93016
[12] Fu, X., Controllability of neutral functional differential systems in abstract space, Appl Math Comput, 141, 281-296 (2003) · Zbl 1175.93029
[13] Fu, X., Controllability of abstract neutral functional differential systems with unbounded delay, Appl Math Comput, 151, 299-314 (2004) · Zbl 1044.93008
[14] Hernández, E.; O’Regan, D., Controllability of Volterra-Fredholm type systems in Banach space, J Franklin Inst, 346, 95-101 (2009) · Zbl 1160.93005
[15] Ji, S.; Li, G.; Wang, M., Controllability of impulsive differential systems with nonlocal conditions, Appl Math Comput, 217, 6981-6989 (2011) · Zbl 1219.93013
[16] Kilbas, A. A.; Srivastava, Hari M.; Juan Trujillo, J., Theory and applications of fractional differential equations, (North-Holland Mathematics Studies, vol. 204 (2006), Elsevier Science: Elsevier Science B.V, Amsterdam) · Zbl 1092.45003
[17] Miller, K. S.; Ross, B., An introduction to the fractional calculus and differential equations (1993), John Wiley, New York · Zbl 0789.26002
[18] Podlubny, I., Fractional differential equations (1999), Academic Press: Academic Press San Diego · Zbl 0918.34010
[19] Lakshmikantham, V.; Leela, S.; Vasundhara Devi, J., Theory of fractional dynamic systems (2009), Cambridge Scientific Publishers · Zbl 1188.37002
[20] Tarasov, V. E., Fractional dynamics: application of fractional calculus to dynamics of particles, fields and media (2010), Springer HEP · Zbl 1214.81004
[21] Agarwal, R. P.; Belmekki, M.; Benchohra, M., A survey on semilinear differential equations and inclusions involving Riemann-Liouville fractional derivative, Adv Differ Equat, 2009, e1-e47 (2009), Article ID 981728 · Zbl 1182.34103
[22] El-Borai, M. M., Some probability densities and fundamental solutions of fractional evolution equations, Chaos Solitons Fract, 14, 433-440 (2002) · Zbl 1005.34051
[23] El-Borai, M. M., The fundamental solutions for fractional evolution equations of parabolic type, J Appl Math Stoch Anal, 3, 197-211 (2004) · Zbl 1081.34053
[24] Zhou, Y.; Jiao, F., Existence of mild solutions for fractional neutral evolution equations, Comput Math Appl, 59, 1063-1077 (2010) · Zbl 1189.34154
[25] Zhou, Y.; Jiao, F., Nonlocal Cauchy problem for fractional evolution equations, Nonlinear Anal, 11, 4465-4475 (2010) · Zbl 1260.34017
[26] Wang, J.; Zhou, Y., A class of fractional evolution equations and optimal controls, Nonlinear Anal, 12, 262-272 (2011) · Zbl 1214.34010
[27] Wang, J.; Zhou, Y.; Wei, W., A class of fractional delay nonlinear integrodifferential controlled systems in Banach spaces, Commun Nonlinear Sci Numer Simul, 16, 4049-4059 (2011) · Zbl 1223.45007
[28] Wang, J.; Zhou, Y., Analysis of nonlinear fractional control systems in Banach spaces, Nonlinear Anal, 74, 5929-5942 (2011) · Zbl 1223.93059
[29] Balachandran, K.; Park, J. Y., Controllability of fractional integrodifferential systems in Banach spaces, Nonlinear Anal, 3, 363-367 (2009) · Zbl 1175.93028
[30] Tai, Z.; Wang, X., Controllability of fractional-order impulsive neutral functional infinite delay integrodifferential systems in Banach spaces, Appl Math Lett, 22, 1760-1765 (2009) · Zbl 1181.34078
[31] Yan, Z., Controllability of fractional-order partial neutral functional integrodifferential inclusions with infinite delay, J Franklin Inst, 348, 2156-2173 (2011) · Zbl 1231.93018
[32] Sakthivel, R.; Ren, Y.; Mahmudov, N. I., On the approximate controllability of semilinear fractional differential systems, Comput Math Appl, 62, 1451-1459 (2011) · Zbl 1228.34093
[33] Debbouchea, A.; Baleanu, D., Controllability of fractional evolution nonlocal impulsive quasilinear delay integro-differential systems, Comput Math Appl, 62, 1442-1450 (2011) · Zbl 1228.45013
[34] Bragdi, M.; Hazi, M., Existence and controllability result for an evolution fractional integrodifferential systems, Int J Contemp Math Sci, 5, 901-910 (2010) · Zbl 1206.93015
[35] Hernández, E.; O’Regan, D.; Balachandran, K., On recent developments in the theory of abstract differential equations with fractional derivatives, Nonlinear Anal, 73, 3462-3471 (2010) · Zbl 1229.34004
[36] Jaradat, O. K.; Al-Omari, A.; Momani, S., Existence of the mild solution for fractional semilinear initial value problems, Nonlinear Anal, 69, 3153-3159 (2008) · Zbl 1160.34300
[37] Krasnoselskii, M. A., Topological methods in the theory of nonlinear integral equations (1964), Pergamon Press: Pergamon Press New York · Zbl 0111.30303
[38] Sadovskii, B., On a fixed point principle, Funct Anal Appl, 2, 151-153 (1967) · Zbl 0165.49102
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.