×

Flux globalization-based well-balanced path-conservative central-upwind scheme for two-dimensional two-layer thermal rotating shallow water equations. (English) Zbl 07922770

Summary: We develop a flux globalization-based well-balanced path-conservative central-upwind scheme on Cartesian meshes for the two-dimensional (2-D) two-layer thermal rotating shallow water equations. The scheme is well-balanced in the sense that it can exactly preserve a variety of physically relevant steady states. In the 2-D case, preserving general “moving-water” steady states is difficult, and to the best of our knowledge, none of existing schemes can achieve this ultimate goal. The proposed scheme can exactly preserve the \(x\)- and \(y\)-directional jets in the rotational frame as well as certain genuinely 2-D equilibria. Numerical experiments demonstrate the performance of the proposed scheme in computationally non-trivial situations: in the presence of shocks, dry areas, non-trivial topographies, including discontinuous ones, and in the case of hyperbolicity loss. The scheme works equally well in both the \(f\)-plane and beta-plane frameworks.

MSC:

76M12 Finite volume methods applied to problems in fluid mechanics
65M08 Finite volume methods for initial value and initial-boundary value problems involving PDEs
86-08 Computational methods for problems pertaining to geophysics
86-10 Mathematical modeling or simulation for problems pertaining to geophysics
86A10 Meteorology and atmospheric physics
35L67 Shocks and singularities for hyperbolic equations
Full Text: DOI

References:

[1] Beron-Vera, F., Multilayer shallow-water model with stratification and shear, Rev. Mex. Fis., 67, 351-364, 2021
[2] Beron-Vera, F., Nonlinear saturation of thermal instabilities, Phys. Fluids, 33, Article 036608 pp., 2021, 7 pp.
[3] Bouchut, F.; Scherer, E.; Zeitlin, V., Nonlinear adjustment of a front over escarpment, Phys. Fluids, 20, Article 016602 pp., 2008, 12 pp. · Zbl 1182.76075
[4] Bouchut, F.; Zeitlin, V., A robust well-balanced scheme for multi-layer shallow water equations, Discrete Contin. Dyn. Syst., Ser. B, 13, 739-758, 2010 · Zbl 1308.76060
[5] Busto, S.; Dumbser, M.; Gavrilyuk, S.; Ivanova, K., On thermodynamically compatible finite volume methods and path-conservative ADER discontinuous Galerkin schemes for turbulent shallow water flows, J. Sci. Comput., 88, Article 28 pp., 2021, 45 pp. · Zbl 1501.65047
[6] Cao, Y.; Kurganov, A.; Liu, Y., Flux globalization based well-balanced path-conservative central-upwind schemes for the thermal shallow water equations, Commun. Comput. Phys., 34, 993-1042, 2023 · Zbl 1537.76081
[7] Cao, Y.; Kurganov, A.; Liu, Y.; Xin, R., Flux globalization based well-balanced path-conservative central-upwind schemes for shallow water models, J. Sci. Comput., 92, Article 69 pp., 2022, 31 pp. · Zbl 1492.76083
[8] Cao, Y.; Kurganov, A.; Liu, Y.; Zeitlin, V., Flux globalization based well-balanced path-conservative central-upwind scheme for two-layer thermal rotating shallow water equations, J. Comput. Phys., 474, Article 111790 pp., 2023, 29 pp. · Zbl 07640547
[9] Caselles, V.; Donat, R.; Haro, G., Flux-gradient and source-term balancing for certain high resolution shock-capturing schemes, Comput. Fluids, 38, 16-36, 2009 · Zbl 1237.76100
[10] Castro Díaz, M. J.; Fernández-Nieto, E. D.; Garres-Díaz, J.; Morales de Luna, T., Discussion on different numerical treatments on the loss of hyperbolicity for the two-layer shallow water system, Adv. Water Resour., 182, Article 104587 pp., 2023
[11] Castro Díaz, M. J.; Kurganov, A.; Morales de Luna, T., Path-conservative central-upwind schemes for nonconservative hyperbolic systems, ESAIM: Math. Model. Numer. Anal., 53, 959-985, 2019 · Zbl 1418.76034
[12] Castro Díaz, M. J.; LeFloch, P. G.; Muñoz-Ruiz, M. L.; Parés, C., Why many theories of shock waves are necessary: convergence error in formally path-consistent schemes, J. Comput. Phys., 227, 8107-8129, 2008 · Zbl 1176.76084
[13] Castro Díaz, M. J.; Morales de Luna, T.; Parés, C., Well-balanced schemes and path-conservative numerical methods, (Handbook of Numerical Methods for Hyperbolic Problems. Handbook of Numerical Methods for Hyperbolic Problems, Handbook of Numerical Analysis, vol. 18, 2017, Elsevier/North-Holland: Elsevier/North-Holland Amsterdam), 131-175 · Zbl 1368.65131
[14] Castro Díaz, M. J.; Parés, C., Well-balanced high-order finite volume methods for systems of balance laws, J. Sci. Comput., 82, Article 48 pp., 2020, 48 pp. · Zbl 1440.65109
[15] Chalons, C., Path-conservative in-cell discontinuous reconstruction schemes for non conservative hyperbolic systems, Commun. Math. Sci., 18, 1-30, 2020 · Zbl 1436.35017
[16] Chen, X.; Kurganov, A.; Liu, Y., Flux globalization based well-balanced central-upwind schemes for hydrodynamic equations with general free energy, J. Sci. Comput., 95, Article 95 pp., 2023, 38 pp. · Zbl 1519.76167
[17] Cheng, Y.; Chertock, A.; Herty, M.; Kurganov, A.; Wu, T., A new approach for designing moving-water equilibria preserving schemes for the shallow water equations, J. Sci. Comput., 80, 538-554, 2019 · Zbl 1418.76033
[18] Chertock, A.; Cui, S.; Kurganov, A.; Özcan, Ş. N.; Tadmor, E., Well-balanced schemes for the Euler equations with gravitation: conservative formulation using global fluxes, J. Comput. Phys., 358, 36-52, 2018 · Zbl 1381.76316
[19] Chertock, A.; Dudzinski, M.; Kurganov, A.; Lukáčová-Medviďová, M., Well-balanced schemes for the shallow water equations with Coriolis forces, Numer. Math., 138, 939-973, 2018 · Zbl 1448.65097
[20] Chertock, A.; Herty, M.; Özcan, Ş. N., Well-balanced central-upwind schemes for \(2 \times 2\) systems of balance laws, (Theory, Numerics and Applications of Hyperbolic Problems I. Theory, Numerics and Applications of Hyperbolic Problems I, Springer Proceedings in Mathematics & Statistics, vol. 236, 2018, Springer), 345-361 · Zbl 1407.65143
[21] Chertock, A.; Kurganov, A.; Liu, X.; Liu, Y.; Wu, T., Well-balancing via flux globalization: applications to shallow water equations with wet/dry fronts, J. Sci. Comput., 90, Article 9 pp., 2022, 21 pp. · Zbl 1492.76084
[22] Chu, S.; Kurganov, A.; Na, M., Fifth-order A-WENO schemes based on the path-conservative central-upwind method, J. Comput. Phys., 469, Article 111508 pp., 2022, 22 pp. · Zbl 07592126
[23] Dal Maso, G.; Lefloch, P. G.; Murat, F., Definition and weak stability of nonconservative products, J. Math. Pures Appl., 74, 483-548, 1995 · Zbl 0853.35068
[24] Del Grosso, A.; Castro Díaz, M. J.; Chalons, C.; Morales de Luna, T., On well-balanced implicit-explicit Lagrange-projection schemes for two-layer shallow water equations, Appl. Math. Comput., 442, Article 127702 pp., 2023 · Zbl 1511.76061
[25] Dempsey, D. P.; Rotunno, R., Topographic generation of mesoscale vortices in mixed-layer models, J. Atmos. Sci., 45, 2961-2978, 1988
[26] Desveaux, V.; Masset, A., A fully well-balanced scheme for shallow water equations with Coriolis force, Commun. Math. Sci., 20, 1875-1900, 2022 · Zbl 1499.65458
[27] Donat, D.; Martinez-Gavara, A., Hybrid second order schemes for scalar balance laws, J. Sci. Comput., 48, 52-69, 2011 · Zbl 1221.65218
[28] Dumbser, M.; Hidalgo, A.; Zanotti, O., High order space-time adaptive ADER-WENO finite volume schemes for non-conservative hyperbolic systems, Comput. Methods Appl. Mech. Eng., 268, 359-387, 2014 · Zbl 1295.65088
[29] Fernández, E. G.; Castro Díaz, M. J.; Dumbser, M.; de Luna, T. M., An arbitrary high order well-balanced ADER-DG numerical scheme for the multilayer shallow-water model with variable density, J. Sci. Comput., 90, 52, 2022 · Zbl 07454834
[30] Gascón, L.; Corderán, J. M., Construction of second-order TVD schemes for nonhomogeneous hyperbolic conservation laws, J. Comput. Phys., 172, 261-297, 2001 · Zbl 0991.65072
[31] Gottlieb, S.; Ketcheson, D.; Shu, C.-W., Strong Stability Preserving Runge-Kutta and Multistep Time Discretizations, 2011, World Scientific Publishing Co. Pte. Ltd.: World Scientific Publishing Co. Pte. Ltd. Hackensack, NJ · Zbl 1241.65064
[32] Gottlieb, S.; Shu, C.-W.; Tadmor, E., Strong stability-preserving high-order time discretization methods, SIAM Rev., 43, 89-112, 2001 · Zbl 0967.65098
[33] Gouzien, E.; Lahaye, N.; Zeitlin, V.; Dubos, T., Thermal instability in rotating shallow water with horizontal temperature/density gradients, Phys. Fluids, 29, Article 101702 pp., 2017, 5 pp.
[34] Holm, D. D.; Luesnik, E.; Pan, W., Stochastic mesoscale circulation dynamics in the thermal ocean, Phys. Fluids, 33, Article 046603 pp., 2021, 22 pp.
[35] Kurganov, A.; Lin, C.-T., On the reduction of numerical dissipation in central-upwind schemes, Commun. Comput. Phys., 2, 141-163, 2007 · Zbl 1164.65455
[36] Kurganov, A.; Liu, Y.; Xin, R., Well-balanced path-conservative central-upwind schemes based on flux globalization, J. Comput. Phys., 474, Article 111773 pp., 2023, 32 pp. · Zbl 07640539
[37] Kurganov, A.; Liu, Y.; Zeitlin, V., Numerical dissipation switch for two-dimensional central-upwind schemes, M2AN Math. Model. Numer. Anal., 55, 713-734, 2021, Preprint available at · Zbl 1485.76058
[38] Kurganov, A.; Liu, Y.; Zeitlin, V., Moist-convective thermal rotating shallow water model, Phys. Fluids, 32, Article 066601 pp., 2020, 14 pp.
[39] Kurganov, A.; Liu, Y.; Zeitlin, V., A well-balanced central-upwind scheme for the thermal rotating shallow water equations, J. Comput. Phys., 411, Article 109414 pp., 2020, 24 pp. · Zbl 1436.65123
[40] Kurganov, A.; Liu, Y.; Zeitlin, V., Interaction of tropical cyclone-like vortices with sea-surface temperature anomalies and topography in a simple shallow-water atmospheric model, Phys. Fluids, 33, Article 106606 pp., 2021, 19 pp.
[41] Kurganov, A.; Liu, Y.; Zeitlin, V., Thermal versus isothermal rotating shallow water equations: comparison of dynamical processes by simulations with a novel well-balanced central-upwind scheme, Geophys. Astrophys. Fluid Dyn., 115, 125-154, 2021 · Zbl 1482.76087
[42] Kurganov, A.; Noelle, S.; Petrova, G., Semidiscrete central-upwind schemes for hyperbolic conservation laws and Hamilton-Jacobi equations, SIAM J. Sci. Comput., 23, 707-740, 2001 · Zbl 0998.65091
[43] Kurganov, A.; Tadmor, E., New high resolution central schemes for nonlinear conservation laws and convection-diffusion equations, J. Comput. Phys., 160, 241-282, 2000 · Zbl 0987.65085
[44] Lahaye, N.; Zeitlin, V.; Dubos, T., Coherent dipoles in a mixed layer with variable buoyancy: theory compared to observations, Ocean Model., 153, Article 101673 pp., 2020, 9 pp.
[45] Lambaerts, J.; Lapeyre, G.; Zeitlin, V.; Bouchut, F., Simplified two-layer models of precipitating atmosphere and their properties, Phys. Fluids, 23, Article 046603 pp., 2011, 24 pp.
[46] Lavoie, R. L., A mesoscale numerical model of lake-effect storms, J. Atmos. Sci., 29, 1025-1040, 1972
[47] Le Sommer, J.; Reznik, G. M.; Zeitlin, V., Nonlinear geostrophic adjustment of long-wave disturbances in the shallow-water model on the equatorial beta-plane, J. Fluid Mech., 515, 135-170, 2004 · Zbl 1130.76342
[48] LeBlond, P. H.; Mysak, L. A., Waves in the ocean, 1978, Elsevier Scientific Publishing: Elsevier Scientific Publishing Amsterdam
[49] LeFloch, P. G., Hyperbolic systems of conservation laws, (The Theory of Classical and Nonclassical Shock Waves. The Theory of Classical and Nonclassical Shock Waves, Lectures in Mathematics ETH Zürich, 2002, Birkhäuser Verlag: Birkhäuser Verlag Basel) · Zbl 1019.35001
[50] LeFloch, P. G., Graph solutions of nonlinear hyperbolic systems, J. Hyperbolic Differ. Equ., 1, 643-689, 2004 · Zbl 1071.35078
[51] Lie, K.-A.; Noelle, S., On the artificial compression method for second-order nonoscillatory central difference schemes for systems of conservation laws, SIAM J. Sci. Comput., 24, 1157-1174, 2003 · Zbl 1038.65078
[52] Lteif, R., Well-balanced numerical resolution of the two-layer shallow water equations under rigid-lid with wet-dry fronts, Comput. Fluids, 235, Article 105277 pp., 2022 · Zbl 1521.76450
[53] Mantri, Y.; Öffner, P.; Ricchiuto, M., Fully well balanced entropy controlled DGSEM forshallow water flows: global flux quadrature and cell entropy correction, J. Comput. Phys., 498, Article 112673 pp., 2024 · Zbl 07797652
[54] Martinez-Gavara, A.; Donat, R., A hybrid second order scheme for shallow water flows, J. Sci. Comput., 48, 241-257, 2011 · Zbl 1426.76402
[55] McCreary, J. P.; Kundu, P. K.; Molinari, R. L., A numerical investigation of dynamics, thermodynamics and mixed-layer processes in the Indian Ocean, Prog. Oceanogr., 31, 181-244, 1993
[56] Mignotte, M.; Stefanescu, D., On an estimation of polynomial roots by Lagrange, 1-17, 2002, IRMA Strasbourg, Tech. Rep. 025/2002
[57] Muñoz-Ruiz, M. L.; Parés, C., On the convergence and well-balanced property of path-conservative numerical schemes for systems of balance laws, J. Sci. Comput., 48, 274-295, 2011 · Zbl 1230.65102
[58] Nessyahu, H.; Tadmor, E., Nonoscillatory central differencing for hyperbolic conservation laws, J. Comput. Phys., 87, 408-463, 1990 · Zbl 0697.65068
[59] Parés, C., Numerical methods for nonconservative hyperbolic systems: a theoretical framework, SIAM J. Numer. Anal., 44, 300-321, 2006 · Zbl 1130.65089
[60] Parés, C., Path-conservative numerical methods for nonconservative hyperbolic systems, (Numerical Methods for Balance Laws, vol. 24, 2009, Quad. Mat. Dept. Math. Seconda Univ. Napoli: Quad. Mat. Dept. Math. Seconda Univ. Napoli Caserta), 67-121 · Zbl 1266.65148
[61] Pimentel-García, E.; Castro Díaz, M. J.; Chalons, C.; Morales de Luna, T.; Parés, C., In-cell discontinuous reconstruction path-conservative methods for non conservative hyperbolic systems—second-order extension, J. Comput. Phys., 459, Article 111152 pp., 2022, 35 pp. · Zbl 07525142
[62] Ripa, P., Conservation laws for primitive equations models with inhomogeneous layers, Geophys. Astrophys. Fluid Dyn., 70, 85-111, 1993
[63] Ripa, P., On improving a one-layer ocean model with thermodynamics, J. Fluid Mech., 303, 169-201, 1995 · Zbl 0856.76008
[64] Rostami, M.; Zeitlin, V., Can geostrophic adjustment of baroclinic disturbances in the tropical atmosphere explain MJO events?, Q. J. R. Meteorol. Soc., 146, 3998-4013, 2020
[65] Salby, M. L., Deep circulations under simple classes of stratification, Tellus, 41A, 48-65, 1989
[66] Schneider, K. A.; Gallardo, J. M.; Balsara, D. S.; Nkonga, B.; Parés, C., Multidimensional approximate Riemann solvers for hyperbolic nonconservative systems. Applications to shallow water systems, J. Comput. Phys., 444, Article 110547 pp., 2021, 49 pp. · Zbl 07515448
[67] Sweby, P. K., High resolution schemes using flux limiters for hyperbolic conservation laws, SIAM J. Numer. Anal., 21, 995-1011, 1984 · Zbl 0565.65048
[68] Tabernero, V. G.; Castro Díaz, M. J.; García-Rodríguez, J. A., High-order well-balanced numerical schemes for one-dimensional shallow-water systems with Coriolis terms, Appl. Math. Comput., 469, Article 128528 pp., 2024 · Zbl 07833974
[69] Warneford, E. S.; Dellar, P. J., The quasi-geostrophic theory of the thermal shallow water equations, J. Fluid Mech., 723, 374-403, 2013 · Zbl 1287.76070
[70] Yan, R.; Tong, W.; Chen, G., A well-balanced positivity-preserving multidimensional central scheme for shallow water equations, Appl. Numer. Math., 197, 97-118, 2024 · Zbl 07827760
[71] Young, W. R., The subinertial mixed layer approximation, J. Phys. Oceanogr., 24, 1812-1826, 1994
[72] Zeitlin, V., Geophysical Fluid Dynamics: Understanding (Almost) Everything with Rotating Shallow Water Models, 2018, Oxford University Press: Oxford University Press Oxford · Zbl 1382.86001
[73] Zhang, J.; Xia, Y.; Xu, Y., Well-balanced path-conservative discontinuous Galerkin methods with equilibrium preserving space for two-layer shallow water equations, 2024
[74] Zhang, N., Well-balanced finite difference WENO-AO scheme for rotating shallow water equations with Coriolis force, Comput. Fluids, 273, Article 106209 pp., 2024 · Zbl 07833798
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.