×

Thermal versus isothermal rotating shallow water equations: comparison of dynamical processes by simulations with a novel well-balanced central-upwind scheme. (English) Zbl 1482.76087

Summary: We introduce a new high-resolution well-balanced central-upwind scheme for two-dimensional rotating shallow water equations with horizontal temperature/density gradients – thermal rotating shallow water equations. The scheme maintains the equilibrium states in the presence of topography and temperature/density variations, and allows for high-resolution tracking of the active scalar field together with velocity and pressure fields. We use the new scheme to highlight both the similarities and differences in the predictions of the thermal and isothermal shallow water models for the fundamental dynamical processes: evolution of isolated vortices in the midlatitude \(\beta\)-plane in the presence of topography and relaxation of localised pressure and temperature perturbations in the equatorial \(\beta\)-plane.

MSC:

76M20 Finite difference methods applied to problems in fluid mechanics
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
76U60 Geophysical flows
Full Text: DOI

References:

[1] Bollermann, A.; Noelle, S.; Luká��ová-Medviďová, M., Finite volume evolution Galerkin methods for the shallow water equations with dry beds, Commun. Comput. Phys., 10, 371-404 (2011) · Zbl 1364.76109 · doi:10.4208/cicp.220210.020710a
[2] Bouchut, F.; Le Sommer, J.; Zeitlin, V., Breaking of balanced and unbalanced equatorial waves, Chaos, 15 (2005) · Zbl 1080.76014 · doi:10.1063/1.1857171
[3] Cheng, Y.; Chertock, A.; Herty, M.; Kurganov, A.; Wu, T., A new approach for designing moving-water equilibria preserving schemes for the shallow water equations, J. Sci. Comput., 80, 538-554 (2019) · Zbl 1418.76033 · doi:10.1007/s10915-019-00947-w
[4] Cheng, Y.; Kurganov, A., Moving-water equilibria preserving central-upwind schemes for the shallow water equations, Commun. Math. Sci., 14, 1643-1663 (2016) · Zbl 1349.76317 · doi:10.4310/CMS.2016.v14.n6.a9
[5] Chertock, A.; Cui, S.; Kurganov, A.; Özcan, Ş. N.; Tadmor, E., Well-balanced schemes for the Euler equations with gravitation: Conservative formulation using global fluxes, J. Comput. Phys., 358, 36-52 (2018) · Zbl 1381.76316 · doi:10.1016/j.jcp.2017.12.026
[6] Chertock, A.; Dudzinski, M.; Kurganov, A.; Lukáčová-Medviďová, M., Well-balanced schemes for the shallow water equations with Coriolis forces, Numer. Math., 138, 939-973 (2018) · Zbl 1448.65097 · doi:10.1007/s00211-017-0928-0
[7] Chertock, A., Herty, M. and Özcan, Ş.N., Well-balanced central-upwind schemes for \(####\) systems of balance laws. In Theory, Numerics and Applications of Hyperbolic Problems. I, Springer Proc. Math. Stat., edited by C. Klingenberg and M. Westdickenberg, Vol. 236 of Springer Proc. Math. Stat., pp. 345-361, 2018c (Springer: Cham). · Zbl 1407.65143
[8] Chertock, A.; Kurganov, A.; Liu, Y., Central-upwind schemes for the system of shallow water equations with horizontal temperature gradients, Numer. Math., 127, 595-639 (2014) · Zbl 1342.76081 · doi:10.1007/s00211-013-0597-6
[9] Cho, J. Y.K.; Menou, K.; Hansen, B. M. S.; Seager, S., Atmospheric circulation of close-in extrasolar giant planets. I. Global, barotropic, adiabatic simulations, Astroph. J., 675, 817-845 (2008) · doi:10.1086/524718
[10] Dempsey, D. P.; Rotunno, R., Topographic generation of mesoscale vortices in mixed-layer models, J. Atmos. Sci., 45, 2961-2978 (1988) · doi:10.1175/1520-0469(1988)045<2961:TGOMVI>2.0.CO;2
[11] Gill, A., Some simple solutions for heat induced tropical circulation, Q. J. Roy. Met. Soc., 106, 447-462 (1980) · doi:10.1002/qj.49710644905
[12] Gottlieb, S.; Ketcheson, D.; Shu, C. W., Strong Stability Preserving Runge-Kutta and Multistep Time Discretizations (2011), World Scientific Publishing Co. Pte. Ltd.: World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ · Zbl 1241.65064
[13] Gottlieb, S.; Shu, C. W.; Tadmor, E., Strong stability-preserving high-order time discretization methods, SIAM Rev., 43, 89-112 (2001) · Zbl 0967.65098 · doi:10.1137/S003614450036757X
[14] Gouzien, E.; Lahaye, N.; Zeitlin, V.; Dubos, T., Thermal instability in rotating shallow water with horizontal temperature/density gradients, Phys. Fluids, 29 (2017) · doi:10.1063/1.4996981
[15] Halverson, J. B.; Simpson, J.; Heymsfield, G.; Pierce, H.; Hock, T.; Ritchie, L., Warm-core structure of Hurricane Erin diagnosed from high-altitude dropsondes during CAMEX-4, J. Atmos. Sci., 63, 309-324 (2006) · doi:10.1175/JAS3596.1
[16] Kurganov, A., Central schemes: A powerful black-box solver for nonlinear hyperbolic PDEs. In Handbook of Numerical Methods for Hyperbolic Problems, Handb. Numer. Anal., edited by R. Abgrall and C.W. Shu, Vol. 17 of Handb. Numer. Anal., pp. 525-548, 2016 (Elsevier/North-Holland: Amsterdam). · Zbl 1352.65001
[17] Kurganov, A., Finite-volume schemes for shallow-water equations, Acta Numer., 27, 289-351 (2018) · Zbl 1430.76372 · doi:10.1017/S0962492918000028
[18] Kurganov, A.; Lin, C. T., On the reduction of numerical dissipation in central-upwind schemes, Commun. Comput. Phys., 2, 141-163 (2007) · Zbl 1164.65455
[19] Kurganov, A., Liu, Y. and Zeitlin, V., Numerical dissipation switch for two-dimensional central-upwind schemes. Submitted, 2019 Preprint available athttps://sites.google.com/view/alexander-kurganov/publications. · Zbl 1485.76058
[20] Kurganov, A.; Liu, Y.; Zeitlin, V., A well-balanced central-upwind scheme for the thermal rotating shallow water equations, J. Comput. Phys., 411 (2020) · Zbl 1436.65123 · doi:10.1016/j.jcp.2020.109414
[21] Kurganov, A.; Noelle, S.; Petrova, G., Semidiscrete central-upwind schemes for hyperbolic conservation laws and Hamilton-Jacobi equations, SIAM J. Sci. Comput., 23, 707-740 (2001) · Zbl 0998.65091 · doi:10.1137/S1064827500373413
[22] Kurganov, A.; Petrova, G., A second-order well-balanced positivity preserving central-upwind scheme for the Saint-Venant system, Commun. Math. Sci., 5, 133-160 (2007) · Zbl 1226.76008 · doi:10.4310/CMS.2007.v5.n1.a6
[23] Kurganov, A.; Tadmor, E., New high-resolution central schemes for nonlinear conservation laws and convection-diffusion equations, J. Comput. Phys., 160, 241-282 (2000) · Zbl 0987.65085 · doi:10.1006/jcph.2000.6459
[24] Kurganov, A.; Tadmor, E., Solution of two-dimensional Riemann problems for gas dynamics without Riemann problem solvers, Numer. Methods Partial Differ. Equ., 18, 584-608 (2002) · Zbl 1058.76046 · doi:10.1002/num.10025
[25] Lavoie, R. L., A mesoscale numerical model of lake-effect storms, J. Atmos. Sci., 29, 1025-1040 (1972) · doi:10.1175/1520-0469(1972)029<1025:AMNMOL>2.0.CO;2
[26] Le Sommer, J.; Reznik, G. M.; Zeitlin, V., Nonlinear geostrophic adjustment of long-wave disturbances in the shallow-water model on the equatorial beta-plane, J. Fluid Mech., 515, 135-170 (2004) · Zbl 1130.76342 · doi:10.1017/S0022112004000229
[27] Lie, K. A.; Noelle, S., On the artificial compression method for second-order nonoscillatory central difference schemes for systems of conservation laws, SIAM J. Sci. Comput., 24, 1157-1174 (2003) · Zbl 1038.65078 · doi:10.1137/S1064827501392880
[28] McCreary, J. P.; Kundu, P. K.; Molinari, R. L., A numerical investigation of dynamics, thermodynamics and mixed-layer processes in the Indian Ocean, Prog. Oceanog., 31, 181-244 (1993) · doi:10.1016/0079-6611(93)90002-U
[29] Nessyahu, H.; Tadmor, E., Nonoscillatory central differencing for hyperbolic conservation laws, J. Comput. Phys., 87, 408-463 (1990) · Zbl 0697.65068 · doi:10.1016/0021-9991(90)90260-8
[30] Reznik, G. M.; Dewar, W., An analytical theory of distributed axisymmetric barotropic vortices on the beta-plane, J. Fluid Mech., 269, 301-321 (1994) · Zbl 0809.76013 · doi:10.1017/S0022112094001576
[31] Ripa, P., On improving a one-layer ocean model with thermodynamics, J. Fluid Mech., 303, 169-201 (1995) · Zbl 0856.76008 · doi:10.1017/S0022112095004228
[32] Salby, M. L., Deep circulations under simple classes of stratification, Tellus, 41A, 48-65 (1989) · doi:10.1111/j.1600-0870.1989.tb00365.x
[33] Sánchez-Linares, C.; Morales de Luna, T.; Castro Díaz, M. J., A HLLC scheme for Ripa model, Appl. Math. Comput., 272, 369-384 (2016) · Zbl 1410.76261
[34] Stone, P. H., On non-geostrophic baroclinic instability, J. Atmos. Sci., 23, 390-400 (1966) · doi:10.1175/1520-0469(1966)023<0390:ONGBS>2.0.CO;2
[35] Sun, W.; Dong, C.; Tan, W.; He, Y., Statistical characteristics of cyclonic warm-core eddies and anticyclonic cold-core eddies in the North Pacific based on remote sensing data, Remote Sens., 11, 208 (2019) · doi:10.3390/rs11020208
[36] Sutyrin, G. G.; Flierl, G. R., Intense vortex motionon the beta plane: Development of the beta gyres, J. Atmos Sci., 51, 773-790 (1994) · doi:10.1175/1520-0469(1994)051<0773:IVMOTB>2.0.CO;2
[37] Sweby, P. K., High resolution schemes using flux limiters for hyperbolic conservation laws, SIAM J. Numer. Anal., 21, 995-1011 (1984) · Zbl 0565.65048 · doi:10.1137/0721062
[38] van Leer, B., Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov’s method, J. Comput. Phys., 32, 101-136 (1979) · Zbl 1364.65223 · doi:10.1016/0021-9991(79)90145-1
[39] Warn, T.; Bokhove, O.; Shepherd, T. G.; Vallis, G. K., Rossby number expansions, slaving principles, and balanced dynamics, Q. J. Roy. Met. Soc., 121, 723-739 (1995) · doi:10.1002/qj.49712152313
[40] Warneford, E. S.; Dellar, P. J., The quasi-geostrophic theory of the thermal shallow water equations, J. Fluid Mech., 723, 374-403 (2013) · Zbl 1287.76070 · doi:10.1017/jfm.2013.101
[41] Warnerford, E. S.; Dellar, P. J., Thermal shallow water models of geostrophic turbulence in Jovian atmospheres, Phys. Fluids, 26 (2014) · Zbl 1321.85002
[42] Young, W. R., The subinertial mixed layer approximation, J. Phys. Oceanogr., 24, 1812-1826 (1994) · doi:10.1175/1520-0485(1994)024<1812:TSMLA>2.0.CO;2
[43] Young, W. R.; Chen, L., Baroclinic instability and thermohaline alignment in the mixed layer, J. Phys. Oceanogr., 25, 3172-3185 (1995) · doi:10.1175/1520-0485(1995)025<3172:BIATGA>2.0.CO;2
[44] Zeitlin, V., Geophysical Fluid Dynamics: Understanding (almost) Everything with Rotating Shallow Water Models (2018), Oxford University Press: Oxford University Press, Oxford · Zbl 1382.86001
[45] Zerroukat, M.; Allen, T., A moist Boussinesq shallow water equations set for testing atmospheric models, J. Comp. Phys., 290, 55-72 (2015) · Zbl 1349.86044 · doi:10.1016/j.jcp.2015.02.011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.