×

An arbitrary high order well-balanced ADER-DG numerical scheme for the multilayer shallow-water model with variable density. (English) Zbl 07454834

Summary: In this work, we present a novel numerical discretization of a variable pressure multilayer shallow water model. The model can be written as a hyperbolic PDE system and allows the simulation of density driven gravity currents in a shallow water framework. The proposed discretization consists in an unlimited arbitrary high order accurate (ADER) Discontinuous Galerkin (DG) method, which is then limited with the MOOD paradigm using an a posteriori subcell finite volume limiter. The resulting numerical scheme is arbitrary high order accurate in space and time for smooth solutions and does not destroy the natural subcell resolution inherent in the DG methods in the presence of strong gradients or discontinuities. A numerical strategy to preserve non-trivial stationary solutions is also discussed. The final method is very accurate in smooth regions even using coarse or very coarse meshes, as shown in the numerical simulations presented here. Finally, a comparison with a laboratory test, where empirical data are available, is also performed.

MSC:

65Mxx Numerical methods for partial differential equations, initial value and time-dependent initial-boundary value problems
76Mxx Basic methods in fluid mechanics
35Lxx Hyperbolic equations and hyperbolic systems

Software:

PVM; MOOD

References:

[1] Adduce, C.; Sciortino, G.; Proietti, S., Gravity currents produced by lock exchanges: experiments and simulations with a two-layer shallow-water model with entrainment, J. Hydraul. Eng., 138, 2, 111-121 (2012) · doi:10.1061/(ASCE)HY.1943-7900.0000484
[2] Audusse, E.; Bouchut, F.; Bristeau, MO; Klein, R.; Perthame, B., A fast and stable well-balanced scheme with hydrostatic reconstruction for shallow water flows, SIAM J. Sci. Comput., 25, 6, 2050-2065 (2004) · Zbl 1133.65308 · doi:10.1137/S1064827503431090
[3] Audusse, E.; Bristeau, MO, A well-balanced positivity preserving “second-order” scheme for shallow water flows on unstructured meshes, J. Comput. Phys., 206, 1, 311-333 (2005) · Zbl 1087.76072
[4] Audusse, E.; Bristeau, MO, Finite-volume solvers for a multilayer saint-venant system, Appl. Math. Comput. Sci., 17, 311-320 (2007) · Zbl 1152.35305 · doi:10.2478/v10006-007-0025-0
[5] Audusse, E.; Bristeau, MO; Pelanti, M.; Sainte-Marie, J., Approximation of the hydrostatic Navier-Stokes system for density stratified flows by a multilayer model: kinetic interpretation and numerical solution, J. Comput. Phys., 230, 9, 3453-3478 (2011) · Zbl 1316.76055
[6] Audusse, E.; Bristeau, MO; Perthame, B.; Sainte-Marie, J., A multilayer saint-venant system with mass exchanges for shallow water flows. Derivation and numerical validation, ESAIM Math. Model. Numer. Anal., 45, 1, 169-200 (2011) · Zbl 1290.35194
[7] Bassi, C.; Bonaventura, L.; Busto, S.; Dumbser, M., A hyperbolic reformulation of the Serre-Green-Naghdi model for general bottom topographies, Comput. Fluids, 212, 104716 (2020) · Zbl 1502.76014
[8] Bermúdez, A.; Vázquez, M., Upwind methods for hyperbolic conservation laws with source terms, Comput. Fluids, 23, 8, 1049-1071 (1994) · Zbl 0816.76052
[9] Bonaventura, L., Fernández-Nieto, E.D., Garres-Díaz, J., Narbona-Reina, G.: Multilayer shallow water models with locally variable number of layers and semi-implicit time discretization. J. Comput. Phys. 364, 209-234 (2018) doi:10.1016/j.jcp.2018.03.017. http://www.sciencedirect.com/science/article/pii/S0021999118301694 · Zbl 1392.76012
[10] Bouchut, F.; Zeitlin, V., A robust well-balanced scheme for multi-layer shallow water equations, Discrete Continu. Dyn. Syst. Ser. B, 13, 739-758 (2010) · Zbl 1308.76060 · doi:10.3934/dcdsb.2010.13.739
[11] Bristeau, M.O., Mangeney, A., Sainte-Marie, J., Seguin, N.: An energy-consistent depth-averaged euler system: derivation and properties. arXiv preprint arXiv:1406.6565 (2014) · Zbl 1307.35162
[12] Bürger, R.; Fernández-Nieto, D.; Andrés Osores, EV, A dynamic multilayer shallow water model for polydisperse sedimentation, ESAIM Math. Modell. Numer. Anal. (2019) · Zbl 1477.35159 · doi:10.1051/m2an/2019032
[13] Busto, S.; Chiocchetti, S.; Dumbser, M.; Gaburro, E.; Peshkov, I., High order ADER schemes for continuum mechanics, Front. Phys., 8, 32 (2020)
[14] Busto, S.; Dumbser, M.; Escalante, C.; Gavrilyuk, S.; Favrie, N., On high order ADER discontinuous Galerkin schemes for first order hyperbolic reformulations of nonlinear dispersive systems, J. Sci. Comput., 87, 48 (2021) · Zbl 1465.76060
[15] Busto, S.; Tavelli, M.; Boscheri, W.; Dumbser, M., Efficient high order accurate staggered semi-implicit discontinuous Galerkin methods for natural convection problems, Comput. Fluids, 198, 104399 (2020) · Zbl 1519.76140
[16] Busto, S.; Toro, EF; Vázquez-Cendón, ME, Design and analysis of ader-type schemes for model advection-diffusion-reaction equations, J. Comput. Phys., 327, 553-575 (2016) · Zbl 1422.65203
[17] Castro, M.; Fernández-Nieto, E., A class of computationally fast first order finite volume solvers: PVM methods, SIAM J. Sci. Comput. (2012) · Zbl 1253.65167 · doi:10.1137/100795280
[18] Castro, M.; Gallardo, JM; Parés, C., High order finite volume schemes based on reconstruction of states for solving hyperbolic systems with nonconservative products. applications to shallow-water systems, Math. Comput., 75, 255, 1103-1134 (2006) · Zbl 1096.65082
[19] Castro, M.; Macías, J.; Parés, C., A q-scheme for a class of systems of coupled conservation laws with source term. Application to a two-layer 1-D shallow water system, ESAIM Math. Modell. Numer. Anal., 35, 1, 107-127 (2001) · Zbl 1094.76046
[20] Castro, M.; Pardo, A.; Parés, C., Well-balanced schemes based on a generalized hydrostatic reconstruction technique, Math. Models Methods Appl. Sci., 17, 12, 2055-2113 (2007) · Zbl 1137.76038
[21] Castro, MJ; Parés, C., Well-balanced high-order finite volume methods for systems of balance laws, J. Sci. Comput., 82, 2, 48 (2020) · Zbl 1440.65109
[22] Casulli, V., Semi-implicit finite difference methods for the two-dimensional shallow water equations, J. Comput. Phys., 86, 56-74 (1990) · Zbl 0681.76022
[23] Casulli, V., A semi-implicit finite difference method for non-hydrostatic, free-surface flows, Int. J. Numer. Meth. Fluids, 30, 4, 425-440 (1999) · Zbl 0944.76050
[24] Casulli, V., A high-resolution wetting and drying algorithm for free-surface hydrodynamics, Int. J. Numer. Meth. Fluids, 60, 391-408 (2009) · Zbl 1161.76034
[25] Casulli, V., A semi-implicit numerical method for the free-surface Navier-Stokes equations, Int. J. Numer. Meth. Fluids, 74, 605-622 (2014) · Zbl 1455.65127
[26] Casulli, V.; Cheng, R., Semi-implicit finite difference methods for three-dimensional shallow water flow, Int. J. Numer. Methods Fluids, 15, 629-648 (1992) · Zbl 0762.76068
[27] Charrier, D., Weinzierl, T.: Stop talking to me-a communication-avoiding ADER-DG realisation. SIAM J. Sci. Comput. (2018). Submitted to. arXiv:1801.08682
[28] Cheng, Y.; Dong, H.; Li, M.; Xian, W., A high order central DG method of the two-layer shallow water equations, Commun. Comput. Phys., 28, 4, 1437-1463 (2020) · Zbl 1473.65187 · doi:10.4208/cicp.oa-2019-0155
[29] Clain, S.; Diot, S.; Loubère, R., A high-order finite volume method for systems of conservation laws-multi-dimensional optimal order detection (MOOD), J. Comput. Phys., 230, 10, 4028-4050 (2011) · Zbl 1218.65091
[30] Cockburn, B., Hou, S., Shu, C.W.: The Runge-Kutta local projection discontinuous galerkin finite element method for conservation laws. IV: The multidimensional case. Math. Comput. 54(190), 545-581 (1990). http://www.jstor.org/stable/2008501 · Zbl 0695.65066
[31] Cockburn, B., Lin, S.Y., Shu, C.W.: TVB Runge-Kutta local projection discontinuous galerkin finite element method for conservation laws iii: One-dimensional systems. J. Comput. Phys. 84(1), 90-113 (1989) doi:10.1016/0021-9991(89)90183-6. http://www.sciencedirect.com/science/article/pii/0021999189901836 · Zbl 0677.65093
[32] Cockburn, B.; Shu, C., The Runge-Kutta discontinuous Galerkin method for conservation laws V: multidimensional systems, J. Comput. Phys., 141, 2, 199-224 (1998) · Zbl 0920.65059
[33] Cockburn, B., Shu, C.W.: Tvb Runge-Kutta local projection discontinuous galerkin finite element method for conservation laws ii: General framework. Math. Comput. 52(186), 411-435 (1989). http://www.jstor.org/stable/2008474 · Zbl 0662.65083
[34] Cockburn, Bernardo; Shu, Chi-Wang, The runge-kutta local projection \(p^1\)-discontinuous-galerkin finite element method for scalar conservation laws, ESAIM: M2AN, 25, 3, 337-361 (1991) · Zbl 0732.65094 · doi:10.1051/m2an/1991250303371
[35] De St. Venant, B., Theorie du mouvement non-permanent des eaux avec application aux crues des rivers et a l’introduntion des marees dans leur lit, Acad. de Sci. Comptes Redus, 73, 99, 148-154 (1871) · JFM 03.0482.04
[36] Diot, S.; Clain, S.; Loubère, R., Improved detection criteria for the multi-dimensional optimal order detection (MOOD) on unstructured meshes with very high-order polynomials, Comput. Fluids, 64, 43-63 (2012) · Zbl 1365.76149
[37] Dumbser, M., Balsara, D.S., Toro, E.F., Munz, C.D.: A unified framework for the construction of one-step finite volume and discontinuous galerkin schemes on unstructured meshes. J. Comput. Phys. 227(18), 8209-8253 (2008) doi:10.1016/j.jcp.2008.05.025. http://www.sciencedirect.com/science/article/pii/S0021999108002829 · Zbl 1147.65075
[38] Dumbser, M.; Castro, M.; Parés, C.; Toro, E., ADER schemes on unstructured meshes for non-conservative hyperbolic systems: Applications to geophysical flows, Comput. Fluids, 38, 1731-1748 (2009) · Zbl 1177.76222
[39] Dumbser, M.; Castro, M.; Parés, C.; Toro, EF, ADER schemes on unstructured meshes for nonconservative hyperbolic systems: applications to geophysical flows, Comput. Fluids, 38, 9, 1731-1748 (2009) · Zbl 1177.76222 · doi:10.1016/j.compfluid.2009.03.008
[40] Dumbser, M.; Casulli, V., A staggered semi-implicit spectral discontinuous Galerkin scheme for the shallow water equations, Appl. Math. Comput., 219, 8057-8077 (2013) · Zbl 1366.76050
[41] Dumbser, M., Enaux, C., Toro, E.F.: Finite volume schemes of very high order of accuracy for stiff hyperbolic balance laws. J. Comput. Phys. 227(8), 3971-4001 (2008) doi:10.1016/j.jcp.2007.12.005. http://www.sciencedirect.com/science/article/pii/S0021999107005578 · Zbl 1142.65070
[42] Dumbser, M.; Facchini, M., A local space-time discontinuous Galerkin method for Boussinesq-type equations, Appl. Math. Comput., 272, 336-346 (2016) · Zbl 1410.76167
[43] Dumbser, M.; Hidalgo, A.; Castro, M.; Parés, C.; Toro, E., FORCE schemes on unstructured meshes II: Non-conservative hyperbolic systems, Comput. Methods Appl. Mech. Eng., 199, 625-647 (2010) · Zbl 1227.76043
[44] Dumbser, M.; Zanotti, O.; Loubère, R.; Diot, S., A posteriori subcell limiting of the discontinuous Galerkin finite element method for hyperbolic conservation laws, J. Comput. Phys., 278, 47-75 (2014) · Zbl 1349.65448 · doi:10.1016/j.jcp.2014.08.009
[45] Escalante, C.; Dumbser, M.; Castro, M., An efficient hyperbolic relaxation system for dispersive non-hydrostatic water waves and its solution with high order discontinuous Galerkin schemes, J. Comput. Phys., 394, 385-416 (2019) · Zbl 1452.65188
[46] Escalante, C.; de Luna, TM; Castro, M., Non-hydrostatic pressure shallow flows: Gpu implementation using finite volume and finite difference scheme, Appl. Math. Comput., 338, 631-659 (2018) · Zbl 1427.76160
[47] Fambri, F.; Dumbser, M.; Köppel, S.; Rezzolla, L.; Zanotti, O., ADER discontinuous Galerkin schemes for general-relativistic ideal magnetohydrodynamics, Mon. Not. R. Astron. Soc., 477, 4543-4564 (2018)
[48] Favrie, N.; Gavrilyuk, S., A rapid numerical method for solving Serre-Green-Naghdi equations describing long free surface gravity waves, Nonlinearity, 30, 2718-2736 (2017) · Zbl 1432.65120
[49] Fernández-Nieto, EH; Koné, E.; Chacón-Rebollo, T., A multilayer method for the hydrostatic navier-stokes equations: a particular weak solution, J. Sci. Comput. (2014) · Zbl 1299.76134 · doi:10.1007/s10915-013-9802-0
[50] Fernández-Nieto, ED; Parisot, M.; Penel, Y.; Sainte-Marie, J., A hierarchy of dispersive layer-averaged approximations of Euler equations for free surface flows, Commun. Math. Sci., 16, 5, 1169-1202 (2018) · Zbl 1408.35136 · doi:10.4310/CMS.2018.v16.n5.a1
[51] Garres-Díaz, J., Bonaventura, L.: Flexible and efficient discretizations of multilayer models with variable density. Appl. Math. Comput. 402, 126097 (2021) doi:10.1016/j.amc.2021.126097. https://www.sciencedirect.com/science/article/pii/S0096300321001454 · Zbl 1510.65192
[52] Gassner, G.; Dumbser, M.; Hindenlang, F.; Munz, C., Explicit one-step time discretizations for discontinuous Galerkin and finite volume schemes based on local predictors, J. Comput. Phys., 230, 11, 4232-4247 (2011) · Zbl 1220.65122
[53] Gosse, L., A well-balanced scheme using non-conservative products designed for hyperbolic systems of conservation laws with source terms, Math. Models Methods Appl. Sci., 11, 2, 339-365 (2001) · Zbl 1018.65108
[54] Guerrero Fernández, E.; Castro-Díaz, M. J.; Luna, T. M.d, A second-order well-balanced finite volume scheme for the multilayer shallow water model with variable density, Mathematics, 8, 5, 848 (2020)
[55] Hidalgo, A.; Dumbser, M., Ader schemes for nonlinear systems of stiff advection-diffusion-reaction equations, J. Sci. Comput., 48, 1-3, 173-189 (2011) · Zbl 1221.65231
[56] Higdon, RL, Discontinuous galerkin methods for multi-layer ocean modeling: Viscosity and thin layers, J. Comput. Phys. (2020) · Zbl 1453.65323 · doi:10.1016/j.jcp.2019.109018
[57] Izem, N.; Seaid, M.; Wakrim, M., A discontinuous Galerkin method for two-layer shallow water equations, Math. Comput. Simul., 120, 12-23 (2016) · Zbl 1540.76091 · doi:10.1016/j.matcom.2015.04.009
[58] Jackson, H., On the eigenvalues of the Ader-Weno galerkin predictor, J. Comput. Phys., 333, 409-413 (2017) · Zbl 1380.65269
[59] Klaij, CM; van der Vegt, JJ; van der Ven, H., Space-time discontinuous Galerkin method for the compressible Navier-Stokes equations, J. Comput. Phys., 217, 2, 589-611 (2006) · Zbl 1099.76035
[60] Kopriva, DA; Gassner, G., On the quadrature and weak form choices in collocation type discontinuous Galerkin spectral element methods, J. Sci. Comput., 44, 2, 136-155 (2010) · Zbl 1203.65199
[61] Lane-Serff, GF; Beal, LM; Hadfield, TD, Gravity current flow over obstacles, J. Fluid Mech., 292, 39-53 (1995) · Zbl 0850.76074 · doi:10.1017/S002211209500142X
[62] Li, G.; Li, J.; Qian, S.; Gao, J., A well-balanced ADER discontinuous Galerkin method based on differential transformation procedure for shallow water equations, Appl. Math. Comput. (2021) · Zbl 1465.76063 · doi:10.1016/j.amc.2020.125848
[63] Li, G.; Song, L.; Gao, J., High order well-balanced discontinuous galerkin methods based on hydrostatic reconstruction for shallow water equations, J. Comput. Appl. Math., 340, 546-560 (2018) · Zbl 1432.76163 · doi:10.1016/j.cam.2017.10.027
[64] de Luna, TM; Fernández Nieto, E.; Castro Díaz, MJ, Derivation of a multilayer approach to model suspended sediment transport: application to hyperpycnal and hypopycnal plumes, Commun. Comput. Phys., 22, 5, 1439-1485 (2017) · Zbl 1488.76147 · doi:10.4208/cicp.OA-2016-0215
[65] Morales de Luna, T., Castro Díaz, M., Parés, C.: Reliability of first order numerical schemes for solving shallow water system over abrupt topography. Appl. Math. Comput. 219(17), 9012-9032 (2013). doi:10.1016/j.amc.2013.03.033. https://www.sciencedirect.com/science/article/pii/S0096300313002865 · Zbl 1290.76089
[66] Owren, B.; Zennaro, M., Derivation of efficient, continuous, explicit Runge-Kutta methods, SIAM J. Sci. Stat. Comput., 13, 1488-1501 (1992) · Zbl 0760.65073
[67] Parés, C., Numerical methods for nonconservative hyperbolic systems: a theoretical framework, SIAM J. Numer. Anal., 44, 1, 300-321 (2006) · Zbl 1130.65089 · doi:10.1137/050628052
[68] Reed, W.H., Hill, T.: Triangular mesh methods for the neutron transport equation. Tech. rep., Los Alamos Scientific Lab., N. Mex.(USA) (1973)
[69] Rhebergen, S.; Bokhove, O.; van der Vegt, J., Discontinuous Galerkin finite element methods for hyperbolic nonconservative partial differential equations, J. Comput. Phys., 227, 1887-1922 (2008) · Zbl 1153.65097
[70] Tavelli, M.; Dumbser, M., A high order semi-implicit discontinuous galerkin method for the two dimensional shallow water equations on staggered unstructured meshes, Appl. Math. Comput., 234, 623-644 (2014) · Zbl 1298.76120
[71] Titarev, V., Toro, E.: Ader: Arbitrary high order godunov approach. Journal of Scientific Computing 17(1-4), 609-618 (2002) doi:10.1023/A:1015126814947. doi:10.1023 · Zbl 1024.76028
[72] Titarev, V., Toro, E.: Ader schemes for three-dimensional non-linear hyperbolic systems. J. Comput. Phys. 204(2), 715-736 (2005) doi:10.1016/j.jcp.2004.10.028. http://www.sciencedirect.com/science/article/pii/S0021999104004358 · Zbl 1060.65641
[73] Toro, E., Titarev, V.: Solution of the generalized riemann problem for advection-reaction equations. Proc. R Soc. A Math. Phys. Eng. Sci. 458(2018), 271-281 (2002) doi:10.1098/rspa.2001.0926. doi:10.1098 · Zbl 1019.35061
[74] Toro, E., Titarev, V.: Derivative riemann solvers for systems of conservation laws and ader methods. J. Comput. Phys. 212(1), 150-165 (2006) doi:10.1016/j.jcp.2005.06.018. http://www.sciencedirect.com/science/article/pii/S0021999105003141 · Zbl 1087.65590
[75] Toro, E.F., Millington, R., Nejad, L.: Towards very high order godunov schemes. In: Godunov methods, pp. 907-940. Springer (2001) · Zbl 0989.65094
[76] Tumolo, G., Bonaventura, L.: Simulations of Non-hydrostatic Flows by an Efficient and Accurate p-Adaptive DG Method, pp. 41-53. Springer International Publishing, Cham (2020). doi:10.1007/978-3-030-30705-9_5
[77] Tumolo, G.; Bonaventura, L.; Restelli, M., A semi-implicit, semi-Lagrangian, p-adaptive discontinuous Galerkin method for the shallow water equations, J. Comput. Phys., 232, 46-67 (2013) · Zbl 1291.65305
[78] van der Vegt, J., van der Ven, H.: Space-time discontinuous galerkin finite element method with dynamic grid motion for inviscid compressible flows: I. general formulation. J. Comput. Phys. 182(2), 546-585 (2002). doi:10.1006/jcph.2002.7185. http://www.sciencedirect.com/science/article/pii/S0021999102971858 · Zbl 1057.76553
[79] van der Ven, H., van der Vegt, J.: Space-time discontinuous galerkin finite element method with dynamic grid motion for inviscid compressible flows: Ii. efficient flux quadrature. Comput. Methods Appl. Mech. Eng. 191(41), 4747-4780 (2002). doi:10.1016/S0045-7825(02)00403-6. http://www.sciencedirect.com/science/article/pii/S0045782502004036 · Zbl 1099.76521
[80] Wang, Z., Liu, Y.: Extension of the spectral volume method to high-order boundary representation. J. Comput. Phys. 211(1), 154-178 (2006) doi:10.1016/j.jcp.2005.05.022. http://www.sciencedirect.com/science/article/pii/S0021999105002664 · Zbl 1161.76536
[81] Wintermeyer, N.; Winters, AR; Gassner, GJ; Warburton, T., An entropy stable discontinuous galerkin method for the shallow water equations on curvilinear meshes with wet/dry fronts accelerated by GPUs, J. Comput. Phys., 375, 447-480 (2018) · Zbl 1416.65363 · doi:10.1016/j.jcp.2018.08.038
[82] Wu, X.; Kubatko, EJ; Chan, J., High-order entropy stable discontinuous galerkin methods for the shallow water equations: curved triangular meshes and GPU acceleration, Comput. Math. Appl., 82, 179-199 (2021) · Zbl 1524.65613 · doi:10.1016/j.camwa.2020.11.006
[83] Zanotti, O.; Dumbser, M., Efficient conservative ader schemes based on weno reconstruction and space-time predictor in primitive variables, Comput. Astrophys. Cosmol., 3, 1, 1 (2016)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.