×

Well-balanced Finite difference WENO-AO scheme for rotating shallow water equations with Coriolis force. (English) Zbl 07833798

Summary: We develop an efficient conservative high-order well-balanced finite difference weighted essentially nonoscillatory (WENO) scheme for solving the rotating shallow water equations (SWEs) with Coriolis force. The scheme utilizes a well-balanced reconstruction proposed by Xing and Shu for the SWEs in [Y. Xing and C.-W. Shu, J. Comput. Phys. 208, No. 1, 206–227 (2005; Zbl 1114.76340)], combining with the idea of treating rotation as a topography from [F. Bouchut et al., J. Fluid Mech. 514, 35–63 (2004; Zbl 1067.76093)]. The finite difference WENO-AO(5,3) scheme is adopted, which selects from a large fifth-order centered stencil and three small third-order stencils in a weighted form for the reconstruction. Compared to a classical WENO scheme, the WENO-AO(5,3) scheme has a higher resolution, which makes it very effective for a long-time simulation. Numerical results are performed to demonstrate the good performance of our proposed approach for capturing small fine structures.

MSC:

76-XX Fluid mechanics
76U60 Geophysical flows
76M20 Finite difference methods applied to problems in fluid mechanics
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
65L06 Multistep, Runge-Kutta and extrapolation methods for ordinary differential equations
35L65 Hyperbolic conservation laws
35L75 Higher-order nonlinear hyperbolic equations

Software:

chammp
Full Text: DOI

References:

[1] Pedlosky, J., Geophysical fluid dynamics, 1987, Springer-Verlag., 175 Fifth Avenue, New York, New York 10010, U.S.A. · Zbl 0713.76005
[2] Majda, A., (Introduction to pDEs and waves for the atmosphere and ocean. Introduction to pDEs and waves for the atmosphere and ocean, Courant lecture notes in mathematics, vol. 9, 2003, American Mathematical Socity) · Zbl 1278.76004
[3] Zeitlin, V., Geophysical fluid dynamics: understanding (almost) everything with rotating shallow water models, 2018, Oxford University Press: Oxford University Press Great Clarendon Street, Oxford, OX2 6DP, United Kingdom · Zbl 1382.86001
[4] Farge, M.; Sadourny, R., Wave-vortex dynamics in rotating shallow water, J Fluid Mech, 206, 433-462, 1989 · Zbl 0678.76011
[5] Frank, J.; Gottwald, G.; Reich, S., A Hamiltonian particle-mesh method for the rotating shallow-water equations, (Meshfree methods for partial differential equations, 2003, Springer), 131-142
[6] Galewsky, J.; Scott, R. K.; Polvani, L. M., An initial-value problem for testing numerical models of the global shallow-water equations, Tellus Ser A-Dyn Meteorol Oceanol, 56, 5, 429-440, 2004
[7] Hanert, E.; Le Roux, D. Y.; Legat, V.; Deleersnijder, E., An efficient Eulerian finite element method for the shallow water equations, Ocean Model, 10, 1-2, 115-136, 2005
[8] McRae, A.; Cotter, C., Energy-and enstrophy-conserving schemes for the shallow-water equations, based on mimetic finite elements, Q J R Meteorol Soc, 140, 2223-2234, 2014
[9] Pankratz, N.; Natvig, J. R.; Gjevik, B.; Noelle, S., High-order well-balanced finite-volume schemes for barotropic flows: Development and numerical comparisons, Ocean Model, 18, 53-79, 2007
[10] Staniforth, A.; Wood, N.; Reich, S., A time-staggered semi-Lagrangian discretization of the rotating shallow-water equations, Q J R Meteorol Soc, 132, 3107-3116, 2006
[11] Williamson, D. L.; Drake, J. B.; Hack, J. J.; Jakob, R.; Swarztrauber, P. N., A standard test set for numerical approximations to the shallow water equations in spherical geometry, J Comput Phys, 102, 211-224, 1992 · Zbl 0756.76060
[12] Cotter, C. J., Compatible finite element methods for geophysical fluid dynamics, Acta Numer, 32, 291-393, 2023 · Zbl 07736657
[13] Giraldo, F.; Perot, J.; Fischer, P., A spectral element semi-Lagrangian (SESL) method for the spherical shallow water equations, J Comput Phys, 190, 2, 623-650, 2003 · Zbl 1076.76058
[14] Gunzburger, M.; Li, B.; Wang, J.; Yang, Z., A mass conservative, well balanced, tangency preserving and energy decaying method for the shallow water equations on a sphere, J Comput Phys, 457, Article 111067 pp., 2022 · Zbl 1515.76096
[15] Lee, D.; Palha, A., A mixed mimetic spectral element model of the rotating shallow water equations on the cubed sphere, J Comput Phys, 375, 240-262, 2018 · Zbl 1416.65353
[16] Shipton, J.; Gibson, T. H.; Cotter, C. J., Higher-order compatible finite element schemes for the nonlinear rotating shallow water equations on the sphere, J Comput Phys, 375, 1121-1137, 2018 · Zbl 1416.86014
[17] Bermudez, A.; Vazquez, M. E., Upwind methods for hyperbolic conservation laws with source terms, Comput & Fluids, 23, 8, 1049-1071, 1994 · Zbl 0816.76052
[18] Greenberg, J. M.; Leroux, A. Y., A well-balanced scheme for the numerical processing of source terms in hyperbolic equations, SIAM J Numer Anal, 33, 1, 1-16, 1996 · Zbl 0876.65064
[19] Kurganov, A., Finite-volume schemes for shallow-water equations, Acta Numer, 27, 289-351, 2018 · Zbl 1430.76372
[20] Xing, Y.; Shu, C.-W., A survey of high order schemes for the shallow water equations, J Math Study, 47, 3, 221-249, 2014 · Zbl 1324.76035
[21] Stommel, H. M.; Moore, D. W., An introduction to the coriolis force, 1989, Columbia University Press: Columbia University Press New York
[22] Navas-Montilla, A.; Murillo, J., 2D well-balanced augmented ADER schemes for the shallow water equations with bed elevation and extension to the rotating frame, J Comput Phys, 372, 316-348, 2018 · Zbl 1415.76476
[23] Audusse, E.; Klein, R.; Nguyen, D. D.; Vater, S., Preservation of the Discrete Geostrophic Equilibrium in Shallow Water Flows, (Finite volumes for complex applications VI problems & perspectives, 2011, Springer), 59-67 · Zbl 1246.65157
[24] Audusse, E.; Bouchut, F.; Bristeau, M.-O.; Klein, R.; Perthame, B., A fast and stable well-balanced scheme with hydrostatic reconstruction for shallow water flows, SIAM J Sci Comput, 25, 6, 2050-2065, 2004 · Zbl 1133.65308
[25] Audusse, E.; Do, M. H.; Omnes, P.; Penel, Y., Analysis of modified godunov type schemes for the two-dimensional linear wave equation with Coriolis source term on cartesian meshes, J Comput Phys, 373, 91-129, 2018 · Zbl 1416.65287
[26] Bouchut, F.; Le Sommer, J.; Zeitlin, V., Frontal geostrophic adjustment and nonlinear wave phenomena in one-dimensional rotating shallow water. Part 2. High-resolution numerical simulations, J Fluid Mech, 514, 35-63, 2004 · Zbl 1067.76093
[27] Dellacherie, S., Analysis of Godunov type schemes applied to the compressible Euler system at low Mach number, J Comput Phys, 229, 4, 978-1016, 2010 · Zbl 1329.76228
[28] Do, M.-H.; Nguyen, V.-T.; Omnes, P., Analysis of dissipation operators that damp spurious modes while maintaining discrete approximate geostrophic equilibriums for the B-grid staggered scheme on triangular meshes, J Comput Phys, Article 112261 pp., 2023 · Zbl 07705902
[29] Audusse, E.; Dubos, V.; Duran, A.; Gaveau, N.; Nasseri, Y.; Penel, Y., Numerical approximation of the shallow water equations with Coriolis source term, ESAIM: Proc Surv, 70, 31-44, 2021 · Zbl 1525.76065
[30] Lukáčová-Medvid’ová, M.; Noelle, S.; Kraft, M., Well-balanced finite volume evolution Galerkin methods for the shallow water equations, J Comput Phys, 221, 122-147, 2007 · Zbl 1123.76041
[31] Chertock, A.; Dudzinski, M.; Kurganov, A.; Lukáčová-Medvid’ová, M., Well-balanced schemes for the shallow water equations with Coriolis forces, Numer Math, 138, 939-973, 2018 · Zbl 1448.65097
[32] Bouchut, F., nonlinear stability of finite volume methods for hyperbolic conservation laws and well-balanced schemes for sources, 2004, Frontiers in Mathematics. Birkhäuser Verlag: Frontiers in Mathematics. Birkhäuser Verlag Basel · Zbl 1086.65091
[33] Cao, Y.; Kurganov, A.; Liu, Y.; Xin, R., Flux globalization based well-balanced path-conservative central-upwind schemes for shallow water models, J Sci Comput, 92, 69, 2022 · Zbl 1492.76083
[34] Desveaux, V.; Masset, A., A fully well-balanced scheme for shallow water equations with Coriolis force, Commun Math Sci, 20, 7, 1875-1900, 2022 · Zbl 1499.65458
[35] Castro, M. J.; López, J. A.; Parés, C., Finite volume simulation of the geostrophic adjustment in a rotating shallow-water system, SIAM J Sci Comput, 31, 444-477, 2008 · Zbl 1183.74332
[36] Tabernero, V. G.; Castro, M. J.; García-Rodríguez, J. A., High-order well-balanced numerical schemes for one-dimensional shallow-water systems with Coriolis terms, Appl Math Comput, 469, Article 128528 pp., 2024 · Zbl 07833974
[37] Xing, Y.; Shu, C.-W., High order finite difference WENO schemes with the exact conservation property for the shallow water equations, J Comput Phys, 208, 206-227, 2005 · Zbl 1114.76340
[38] Balsara, D. S.; Garain, S.; Shu, C.-W., An efficient class of WENO schemes with adaptive order, J Comput Phys, 326, 780-804, 2016 · Zbl 1422.65146
[39] Levy, D.; Puppo, G.; Russo, G., Central WENO schemes for hyperbolic systems of conservation laws, Esaim Math Model Numer Anal, 33, 3, 547-571, 1999 · Zbl 0938.65110
[40] Levy, D.; Puppo, G.; Russo, G., Compact central WENO schemes for multidimensional conservation laws, SIAM J Sci Comput, 22, 2, 656-672, 2000 · Zbl 0967.65089
[41] Borges, R.; Carmona, M.; Costa, B.; Don, W. S., An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws, J Comput Phys, 227, 6, 3191-3211, 2008 · Zbl 1136.65076
[42] Shu, C.-W.; Osher, S., Efficient implementation of essentially non-oscillatory shock-capturing schemes, J Comput Phys, 77, 2, 439-471, 1988 · Zbl 0653.65072
[43] Shu, C.-W., Essentially non-oscillatory and weighted essentially non-oscillatory schemes, Acta Numer, 29, 701-762, 2020 · Zbl 07674567
[44] Gottlieb, S.; Shu, C.-W.; Tadmor, E., Strong stability-preserving high-order time discretization methods, SIAM Rev, 43, 1, 89-112, 2001 · Zbl 0967.65098
[45] LeVeque, R. J., Balancing source terms and flux gradients in high-resolution Godunov methods: The quasi-steady wave-propagation algorithm, J Comput Phys, 146, 346-365, 1998 · Zbl 0931.76059
[46] Kuo, A. C.; Polvani, L. M., Time-dependent fully nonlinear geostrophic adjustment, J Phys Oceanogr, 27, 8, 1614-1634, 1997
[47] Peixoto, P. S.; Schreiber, M., Semi-Lagrangian exponential integration with application to the rotating shallow water equations, SIAM J Sci Comput, 41, 5, B903-B928, 2019 · Zbl 1428.65057
[48] Zakerzadeh, H., The RS-IMEX scheme for the rotating shallow water equations with the Coriolis force, (International conference on finite volumes for complex applications, 2017, Springer), 199-207 · Zbl 1365.76330
[49] Liu, X.; Chertock, A.; Kurganov, A., An asymptotic preserving scheme for the two-dimensional shallow water equations with Coriolis forces, J Comput Phys, 391, 259-279, 2019 · Zbl 1452.65192
[50] Kurganov, A.; Liu, Y.; Lukáčová-Medvid’ová, A., A well-balanced asymptotic preserving scheme for the two-dimensional rotating shallow water equations with nonflat bottom topography, SIAM J Sci Comput, 44, 3, A1655-A1680, 2022 · Zbl 1540.76119
[51] Kuo, A. C.; Polvani, L. M., Nonlinear geostrophic adjustment, cyclone/anticyclone asymmetry, and potential vorticity rearrangement, Phys Fluids, 12, 5, 1087-1100, 2000 · Zbl 1149.76443
[52] Dritschel, D. G.; Polvani, L. M.; Mohebalhojeh, A. R., The contour-advective semi-Lagrangian algorithm for the shallow water equations, Mon Weather Rev, 127, 7, 1551-1565, 1999
[53] Bauer, W.; Gay-Balmaz, F., Towards a geometric variational discretization of compressible fluids: The rotating shallow water equations, J Comput Dyn, 6, 1-37, 2019 · Zbl 1421.76189
[54] Giorgetta, M.; Hundertmark, T.; Korn, P.; Reich, S.; Restelli, M., Conservative space and time regularizations for the ICON model, Rep Earth Syst Sci, 67, 1-32, 2009
[55] Stewart, A. L.; Dellar, P. J., An energy and potential enstrophy conserving numerical scheme for the multi-layer shallow water equations with complete Coriolis force, J Comput Phys, 313, 99-120, 2016 · Zbl 1349.65335
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.