×

Splitting hypergeometric functions over roots of unity. (English) Zbl 07914826

In the literature, finite field hypergeometric functions were originally defined by Greene as analogues of classical hypergeometric series and were also introduced by Katz about the same time. Greene’s work includes an extensive catalogue of transformation and summation formulas for these functions, mirroring those in the classical case. These functions also have a nice character sum representation, and so the transformation and summation formulas can be interpreted as relations to simplify and evaluate complex character sums. Using character sums to count the number of solutions to equations over finite fields is a long established practice, and finite field hypergeometric functions also naturally lend themselves to this endeavor. Following the modularity theorem, and, by then, known links between finite field hypergeometric functions and elliptic curves, many authors began examining links between these functions and Fourier coefficients of modular forms. More recently, finite field hypergeometric functions have played a central role in the theory of hypergeometric motives, which has led to increased interest in the functions and their properties.
The main purpose of this paper is to generalize an earlier theorem, namely Theorem 1.2 stated in the paper. In the presented paper, the authors examined hypergeometric functions in the finite field, \(p\)-adic and classical settings. In each setting, the authors proved a formula which splits the hypergeometric function into a sum of lower order functions whose arguments differ by roots of unity. They acquired multiple applications of these results, including new reduction and summation formulas for finite field hypergeometric functions, along with classical analogues; evaluations of special values of these functions which apply in both the finite field and \(p\)-adic settings; and new relations to Fourier coefficients of modular forms.

MSC:

11T24 Other character sums and Gauss sums
11S80 Other analytic theory (analogues of beta and gamma functions, \(p\)-adic integration, etc.)
33E50 Special functions in characteristic \(p\) (gamma functions, etc.)
33C20 Generalized hypergeometric series, \({}_pF_q\)
11F11 Holomorphic modular forms of integral weight

Software:

SageMath

References:

[1] Ahlgren, S.; Ono, K., A Gaussian hypergeometric series evaluation and Apéry number congruences, J. Reine Angew. Math., 518, 187-212, 2000 · Zbl 0940.33002
[2] Allen, M., Grove, B., Long, L., Tu, F.: The explicit hypergeometric-modularity method, arXiv:2404.00711
[3] Bailey, W., Generalized Hypergeometric Series, Cambridge Tracts in Mathematics and Mathematical Physics, no. 32, 1935, Cambridge: Cambridge University Press, Cambridge · JFM 61.0406.01
[4] Barman, R.; Kalita, G.; Saikia, N., Hyperelliptic curves and values of Gaussian hypergeometric series, Arch. Math. (Basel), 102, 4, 345-355, 2014 · Zbl 1323.11044 · doi:10.1007/s00013-014-0633-5
[5] Barman, R.; Saikia, N., p-Adic gamma function and the trace of Frobenius of elliptic curves, J. Number Theory, 140, 7, 181-195, 2014 · Zbl 1345.11041 · doi:10.1016/j.jnt.2014.01.026
[6] Berndt, B.; Evans, R.; Williams, K., Gauss and Jacobi Sums, Canadian Mathematical Society Series of Monographs and Advanced Texts, A Wiley-Interscience Publication, 1998, New York: Wiley, New York · Zbl 0906.11001
[7] Beukers, F.; Cohen, H.; Mellit, A., Finite hypergeometric functions, Pure Appl. Math. Q., 11, 4, 559-589, 2015 · Zbl 1397.11162 · doi:10.4310/PAMQ.2015.v11.n4.a2
[8] Davenport, H.; Hasse, H., Die Nullstellen der Kongruenzzetafunktionen in gewissen zyklischen \(F \tilde{a}\) llen, J. Reine Angew. Math., 172, 151-182, 1935 · JFM 60.0913.01 · doi:10.1515/crll.1935.172.151
[9] Dawsey, ML; McCarthy, D., Generalized Paley graphs and their complete subgraphs of orders three and four, Res. Math. Sci., 8, 18, 2021 · Zbl 1461.05138 · doi:10.1007/s40687-021-00254-7
[10] Dawsey, M.L., McCarthy, D.: Hypergeometric functions over finite fields and modular forms: a survey and new conjectures. In: From Operator Theory to Orthogonal Polynomials, Combinatorics, and Number Theory, pp. 41-56, Oper. Theory Adv. Appl., 285, Birkhäuser, Cham (2021) · Zbl 1492.11093
[11] Doran, C., Kelly, T., Salerno, A., Steven, S., Voight, J., Whitcher, U.: Hypergeometric decomposition of symmetric K3 quartic pencils, Res. Math. Sci. 7(2), Paper No. 7 (2020) · Zbl 1441.14128
[12] Evans, R., Hypergeometric \({}_3F_2(1/4)\) evaluations over finite fields and Hecke eigenforms, Proc. Am. Math. Soc., 138, 2, 517-531, 2010 · Zbl 1268.11158 · doi:10.1090/S0002-9939-09-10091-6
[13] Evans, R.; Greene, J., Evaluations of hypergeometric functions over finite fields, Hiroshima Math. J., 39, 2, 217-235, 2009 · Zbl 1241.11138 · doi:10.32917/hmj/1249046338
[14] Frechette, S.; Ono, K.; Papanikolas, M., Gaussian hypergeometric functions and traces of Hecke operators, Int. Math. Res. Not., 60, 3233-3262, 2004 · Zbl 1088.11029 · doi:10.1155/S1073792804132522
[15] Fuselier, J., Hypergeometric functions over \({\mathbb{F} }_p\) and relations to elliptic curves and modular forms, Proc. Am. Math. Soc., 138, 1, 109-123, 2010 · Zbl 1222.11058 · doi:10.1090/S0002-9939-09-10068-0
[16] Fuselier, J., Long, L., Ramakrishna, R., Swisher, H., Tu, F .: Hypergeometric functions over finite fields. Mem. Am. Math. Soc. 280(1382), vii+124 pp (2022)
[17] Fuselier, J.; McCarthy, D., Hypergeometric type identities in the \(p\)-adic setting and modular forms, Proc. Am. Math. Soc., 144, 1493-1508, 2016 · Zbl 1397.11078 · doi:10.1090/proc/12837
[18] Goodson, H., Hypergeometric properties of genus 3 generalized Legendre curves, J. Number Theory, 186, 121-136, 2018 · Zbl 1442.11168 · doi:10.1016/j.jnt.2017.09.019
[19] Greene, J.: Character sum analogues for hypergeometric and generalized hypergeometric functions over finite fields, Thesis (Ph.D.) University of Minnesota (1984)
[20] Greene, J., Hypergeometric functions over finite fields, Trans. Am. Math. Soc., 301, 1, 77-101, 1987 · Zbl 0629.12017 · doi:10.1090/S0002-9947-1987-0879564-8
[21] Greene, J.; Stanton, D., A character sum evaluation and Gaussian hypergeometric series, J. Number Theory, 23, 1, 136-148, 1986 · Zbl 0588.10038 · doi:10.1016/0022-314X(86)90009-0
[22] Gross, B.; Koblitz, N., Gauss sums and the p-adic \(\Gamma \)-function, Ann. Math. (2), 109, 3, 569-581, 1979 · Zbl 0406.12010 · doi:10.2307/1971226
[23] Hardy, GH; Littlewood, JE, Some problems of ‘Partitio Numerorum’: IV. The singular series in Waring’s Problem and the value of the number \(G(k)\), Math. Z., 12, 1, 161-188, 1922 · JFM 48.0146.01 · doi:10.1007/BF01482074
[24] Ireland, K.; Rosen, M., A classical introduction to modern number theory, Graduate Texts in Mathematics, 1990, New York: Springer, New York · Zbl 0712.11001
[25] Katz, NM, Exponential Sums and Differential Equations, 1990, Princeton: Princeton University Press, Princeton · Zbl 0731.14008 · doi:10.1515/9781400882434
[26] Kilbourn, T., An extension of the Apéry number supercongruence, Acta Arith., 123, 4, 335-348, 2006 · Zbl 1170.11008 · doi:10.4064/aa123-4-3
[27] Koblitz, N., \(p\)-Adic Analysis: A Short Course on Recent Work, London Mathematical Society Lecture Note Series,, 1980, Cambridge: Cambridge University Press, Cambridge · Zbl 0439.12011 · doi:10.1017/CBO9780511526107
[28] Koblitz, N.: p-Adic Numbers, p-Adic Analysis, and Zeta-Functions, Graduate Texts in Mathematics, vol. 58, 2nd edn. xii+150 pp. Springer, New York (1984)
[29] Koblitz, N., The number of points on certain families of hypersurfaces over finite fields, Compos. Math., 48, 1, 3-23, 1983 · Zbl 0509.14023
[30] Koike, M., Orthogonal matrices obtained from hypergeometric series over finite fields and elliptic curves over finite fields, Hiroshima Math. J., 25, 43-52, 1995 · Zbl 0944.11021 · doi:10.32917/hmj/1206127824
[31] Lennon, C., Gaussian hypergeometric evaluations of traces of Frobenius for elliptic curves, Proc. Am. Math. Soc., 139, 6, 1931-1938, 2011 · Zbl 1281.11104 · doi:10.1090/S0002-9939-2010-10609-3
[32] LMFDB—The L-functions and Modular Forms Database, www.lmfdb.org
[33] Long, L., Tu, F-T., Yui, N., Zudilin, W.: Supercongruences for rigid hypergeometric Calabi-Yau threefolds. Adv. Math. 393 , Paper No. 108058 (2021) · Zbl 1479.14047
[34] McCarthy, D., On a supercongruence conjecture of Rodriguez-Villegas, Proc. Am. Math. Soc., 140, 2241-2254, 2012 · Zbl 1354.11030 · doi:10.1090/S0002-9939-2011-11087-6
[35] McCarthy, D., Transformations of well-poised hypergeometric functions over finite fields, Finite Fields Their Appl., 18, 6, 1133-1147, 2012 · Zbl 1276.11198 · doi:10.1016/j.ffa.2012.08.007
[36] McCarthy, D., The trace of Frobenius of elliptic curves and the \(p\)-adic gamma function, Pac. J. Math., 261, 1, 219-236, 2013 · Zbl 1296.11079 · doi:10.2140/pjm.2013.261.219
[37] McCarthy, D., The number of \({\mathbb{F} }_p\)-points on Dwork hypersurfaces and hypergeometric functions, Res. Math. Sci., 4, 4, 2017 · Zbl 1410.11082 · doi:10.1186/s40687-017-0096-y
[38] McCarthy, D.; Papanikolas, M., A finite field hypergeometric function associated to eigenvalues of a Siegel eigenform, Int. J. Number Theory, 11, 8, 2431-2450, 2015 · Zbl 1395.11078 · doi:10.1142/S1793042115501134
[39] Mortenson, E., Supercongruences for truncated \({}_{n+1}F_n\) hypergeometric series with applications to certain weight three newforms, Proc. Am. Math. Soc., 133, 2, 321-330, 2005 · Zbl 1152.11327 · doi:10.1090/S0002-9939-04-07697-X
[40] Ono, K., Values of Gaussian hypergeometric series, Trans. Am. Math. Soc., 350, 3, 1205-1223, 1998 · Zbl 0910.11054 · doi:10.1090/S0002-9947-98-01887-X
[41] Papanikolas, M., A formula and a congruence for Ramanujan’s \(\tau \)-function, Proc. Am. Math. Soc., 134, 2, 333-341, 2005 · Zbl 1161.11334 · doi:10.1090/S0002-9939-05-08029-9
[42] Prudnikov, A. P., Brychkov, Y., Marichev, O. I.: Integrals and Series. Vol. 3. More Special Functions, Translated from the Russian by G. G. Gould, Gordon and Breach Science Publishers, New York (1990) · Zbl 0967.00503
[43] Roberts, D.; Rodriguez Villegas, F., Hypergeometric motives, Notices Am. Math. Soc., 69, 6, 914-929, 2022 · Zbl 1506.11097 · doi:10.1090/noti2491
[44] Rodriguez Villegas, F.: Hypergeometric families of Calabi-Yau manifolds, Calabi-Yau varieties and mirror symmetry (Toronto, Ontario). Fields Inst. Commun. 38. Am. Math. Soc. 2003, 223-231 (2001) · Zbl 1062.11038
[45] SageMath, the Sage Mathematics Software System (Version 9.6), The Sage Developers (2022). http://www.sagemath.org
[46] Tripathi, M.: Appell series over finite fields and modular forms. Finite Fields Appl. 90 Paper No. 102230 (2023) · Zbl 1535.33014
[47] Tripathi, M., Barman, R.: A finite field analogue of the Appell series \(F_4\), Res. Number Theory 4, Paper No. 35 (2018) · Zbl 1428.33028
[48] Tripathi, M., Barman, R.: Certain product formulas and values of Gaussian hypergeometric series. Res. Number Theory 6, Paper No. 26 (2020) · Zbl 1467.33004
[49] Tripathi, M.; Barman, R., Appell series over finite fields and Gaussian hypergeometric series, Res. Math. Sci., 8, 28, 2021 · Zbl 1468.33008 · doi:10.1007/s40687-021-00266-3
[50] Tripathi, M.; Saikia, N.; Barman, R., Appell’s hypergeometric series over finite fields, Int. J. Number Theory, 16, 4, 673-692, 2020 · Zbl 1440.33012 · doi:10.1142/S1793042120500347
[51] Tripathi, M., Meher, J.: \(_4F_3\)-Gaussian hypergeometric series and traces of Frobenius for elliptic curves. Res. Math. Sci. 9(4), Paper No. 63 (2022) · Zbl 1506.11150
[52] Weil, A., Numbers of solutions of equations in finite fields, Bull. Am. Math. Soc., 55, 497-508, 1949 · Zbl 0032.39402 · doi:10.1090/S0002-9904-1949-09219-4
[53] Whipple, F., On well-poised series, generalised hypergeometric series having parameters in pairs, each pair with the same sum, Proc. Lond. Math. Soc. (2), 24, 247-263, 1926 · JFM 51.0283.03 · doi:10.1112/plms/s2-24.1.247
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.