×

Hypergeometric type identities in the \(p\)-adic setting and modular forms. (English) Zbl 1397.11078

Summary: We prove hypergeometric type identities for a function defined in terms of quotients of the \( p\)-adic gamma function. We use these identities to prove a supercongruence conjecture of Rodriguez-Villegas between a truncated \( _4F_3\) hypergeometric series and the Fourier coefficients of a certain weight four modular form.

MSC:

11F33 Congruences for modular and \(p\)-adic modular forms
33C20 Generalized hypergeometric series, \({}_pF_q\)
11S80 Other analytic theory (analogues of beta and gamma functions, \(p\)-adic integration, etc.)
33E50 Special functions in characteristic \(p\) (gamma functions, etc.)

Software:

SageMath

References:

[1] Ahlgren, Scott; Ono, Ken, A Gaussian hypergeometric series evaluation and Ap\'ery number congruences, J. Reine Angew. Math., 518, 187-212 (2000) · Zbl 0940.33002 · doi:10.1515/crll.2000.004
[2] Andrews, George E.; Askey, Richard; Roy, Ranjan, Special functions, Encyclopedia of Mathematics and its Applications 71, xvi+664 pp. (1999), Cambridge University Press, Cambridge · Zbl 0920.33001 · doi:10.1017/CBO9781107325937
[3] Berndt, Bruce C.; Evans, Ronald J.; Williams, Kenneth S., Gauss and Jacobi sums, Canadian Mathematical Society Series of Monographs and Advanced Texts, xii+583 pp. (1998), John Wiley & Sons, Inc., New York · Zbl 0906.11001
[4] Barman, Rupam; Saikia, Neelam, \(p\)-adic gamma function and the trace of Frobenius of elliptic curves, J. Number Theory, 140, 181-195 (2014) · Zbl 1345.11041 · doi:10.1016/j.jnt.2014.01.026
[5] Barman, Rupam; Saikia, Neelam, Certain transformations for hypergeometric series in the \(p\)-adic setting, Int. J. Number Theory, 11, 2, 645-660 (2015) · Zbl 1365.11121 · doi:10.1142/S1793042115500359
[6] Evans, Ron, Hypergeometric \(_3F_2(1/4)\) evaluations over finite fields and Hecke eigenforms, Proc. Amer. Math. Soc., 138, 2, 517-531 (2010) · Zbl 1268.11158 · doi:10.1090/S0002-9939-09-10091-6
[7] Fuselier, Jenny G., Hypergeometric functions over finite fields and relations to modular forms and elliptic curves, 63 pp. (2007), ProQuest LLC, Ann Arbor, MI
[8] Fuselier, Jenny G., Hypergeometric functions over \(\mathbb{F}_p\) and relations to elliptic curves and modular forms, Proc. Amer. Math. Soc., 138, 1, 109-123 (2010) · Zbl 1222.11058 · doi:10.1090/S0002-9939-09-10068-0
[9] Fuselier, Jenny G., Traces of Hecke operators in level 1 and Gaussian hypergeometric functions, Proc. Amer. Math. Soc., 141, 6, 1871-1881 (2013) · Zbl 1297.11026 · doi:10.1090/S0002-9939-2012-11540-0
[10] Frechette, Sharon; Ono, Ken; Papanikolas, Matthew, Gaussian hypergeometric functions and traces of Hecke operators, Int. Math. Res. Not., 60, 3233-3262 (2004) · Zbl 1088.11029 · doi:10.1155/S1073792804132522
[11] Greene, John, Hypergeometric functions over finite fields, Trans. Amer. Math. Soc., 301, 1, 77-101 (1987) · Zbl 0629.12017 · doi:10.2307/2000329
[12] Gross, Benedict H.; Koblitz, Neal, Gauss sums and the \(p\)-adic \(\Gamma \)-function, Ann. of Math. (2), 109, 3, 569-581 (1979) · Zbl 0406.12010 · doi:10.2307/1971226
[13] Katz, Nicholas M., Exponential sums and differential equations, Annals of Mathematics Studies 124, xii+430 pp. (1990), Princeton University Press, Princeton, NJ · Zbl 0731.14008
[14] Kilbourn, Timothy, An extension of the Ap\'ery number supercongruence, Acta Arith., 123, 4, 335-348 (2006) · Zbl 1170.11008 · doi:10.4064/aa123-4-3
[15] Koblitz, Neal, \(p\)-adic analysis: a short course on recent work, London Mathematical Society Lecture Note Series 46, 163 pp. (1980), Cambridge University Press, Cambridge-New York · Zbl 0439.12011
[16] Koblitz, Neal, Introduction to elliptic curves and modular forms, Graduate Texts in Mathematics 97, x+248 pp. (1993), Springer-Verlag, New York · Zbl 0804.11039 · doi:10.1007/978-1-4612-0909-6
[17] Lennon, Catherine, Arithmetic and analytic properties of finite field hypergeometric functions, (no paging) pp. (2011), ProQuest LLC, Ann Arbor, MI
[18] Lennon, Catherine, Gaussian hypergeometric evaluations of traces of Frobenius for elliptic curves, Proc. Amer. Math. Soc., 139, 6, 1931-1938 (2011) · Zbl 1281.11104 · doi:10.1090/S0002-9939-2010-10609-3
[19] Lennon, Catherine, Trace formulas for Hecke operators, Gaussian hypergeometric functions, and the modularity of a threefold, J. Number Theory, 131, 12, 2320-2351 (2011) · Zbl 1277.11037 · doi:10.1016/j.jnt.2011.05.005
[20] Mortenson, Eric, Supercongruences for truncated \(_{n+1}\!F_n\) hypergeometric series with applications to certain weight three newforms, Proc. Amer. Math. Soc., 133, 2, 321-330 (electronic) (2005) · Zbl 1152.11327 · doi:10.1090/S0002-9939-04-07697-X
[21] McCarthy, Dermot, Extending Gaussian hypergeometric series to the \(p\)-adic setting, Int. J. Number Theory, 8, 7, 1581-1612 (2012) · Zbl 1253.33024 · doi:10.1142/S1793042112500844
[22] McCarthy, Dermot, On a supercongruence conjecture of Rodriguez-Villegas, Proc. Amer. Math. Soc., 140, 7, 2241-2254 (2012) · Zbl 1354.11030 · doi:10.1090/S0002-9939-2011-11087-6
[23] McCarthy, Dermot, Transformations of well-poised hypergeometric functions over finite fields, Finite Fields Appl., 18, 6, 1133-1147 (2012) · Zbl 1276.11198 · doi:10.1016/j.ffa.2012.08.007
[24] McCarthy, Dermot, The trace of Frobenius of elliptic curves and the \(p\)-adic gamma function, Pacific J. Math., 261, 1, 219-236 (2013) · Zbl 1296.11079 · doi:10.2140/pjm.2013.261.219
[25] [McC7] Dermot McCarthy and Matthew Papanikolas, A finite field hypergeometric function associated to eigenvalues of a Siegel eigenform, arXiv:1205.1006. · Zbl 1395.11078
[26] Rodriguez-Villegas, Fernando, Hypergeometric families of Calabi-Yau manifolds. Calabi-Yau varieties and mirror symmetry, Toronto, ON, 2001, Fields Inst. Commun. 38, 223-231 (2003), Amer. Math. Soc., Providence, RI · Zbl 1062.11038
[27] [Sage] W. A. Stein et al., Sage Mathematics Software (Version 4.8), The Sage Development Team, 2012, http://www.sagemath.org.
[28] Vega, M. Valentina, Hypergeometric functions over finite fields and their relations to algebraic curves, Int. J. Number Theory, 7, 8, 2171-2195 (2011) · Zbl 1287.11138 · doi:10.1142/S1793042111004976
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.