×

A Gaussian hypergeometric series evaluation and Apéry number congruences. (English) Zbl 0940.33002

Let \(A_i, B_j\) be characters of \(\mathbb F_p\). Define the Gaussian hypergeometric series over \(\mathbb F_p\) by \[ _{n+1}F_n\left(\begin{matrix} A_0, &A_1, &\cdots , &A_n \\ \quad &B_1, &\cdots , &B_n \end{matrix} \big|x\right)_p :=\frac{p}{p-1}\sum_{\chi} \left(\begin{matrix} A_0\chi \\ \chi\end{matrix} \right) \left(\begin{matrix} A_1\chi \\ B_1\chi\end{matrix} \right)\cdots \left(\begin{matrix} A_n\chi \\ B_n\chi\end{matrix} \right) \chi(x), \] where here the sum runs over all characters \(\chi\) of \(\mathbb F_p\) and \[ \left(\begin{matrix} A \\ B\end{matrix}\right) := \frac{B(-1)}{p}\sum_{x\in \mathbb F_p} A(x) \bar{B}(1-x). \] Set \[ _{n+1}F_n(x)_p := _{n+1}F_n\left(\begin{matrix} \phi_p, &\phi_p, &\cdots , &\phi_p \\ \quad &\epsilon_p, &\cdots , &\epsilon_p\end{matrix} \bigg|x\right)_p, \] where \(\phi_p\) is the Legendre symbol modulo \(p\) and \(\epsilon_p\) is the trivial character. In this paper, the authors establish many interesting results associated with \(_4F_3(1)_p\). For example, they show that if \(p\) is an odd prime, then \[ _4F_3(1)_p = -\frac{1}{p^2}-\frac{1}{p^3}\sum_{_{\substack{ a^2+b^2+c^2+d^2=4p \\ a,b,c,d>0}}} \chi_{-4}(ab)ab, \] where \(\chi_D\) is the usual Kronecker character. This result follows from a series of lemmas, one of which is \[ p^3 _4F_3(1)_p = -a(p)-p,\tag{1} \] where \(a(n)\) is the coefficient of \(q^n\) in the series expansion of \[ q\prod_{n=1}^\infty (1-q^{2n})^4(1-q^{4n})^4. \] Identity (1) is also used to prove F. Beuker’s conjecture which states that for \(p\) an odd prime, \[ A\left(\frac{p-1}{2}\right) \equiv a(p)\pmod{p^2} \] where \(A(n)\) is the Apéry numbers defined by \[ A(n) = \sum_{j=0}^n \left(\begin{matrix} n+j \\ j\end{matrix} \right)^2\left(\begin{matrix} n \\ j \end{matrix}\right)^2. \]

MSC:

33C20 Generalized hypergeometric series, \({}_pF_q\)
11A07 Congruences; primitive roots; residue systems
33E50 Special functions in characteristic \(p\) (gamma functions, etc.)

References:

[1] Ahlgren S., Elec. J. Comb. 5 pp R10– (1998)
[2] Berndt R. J., J. Number Th. 11 pp 349– (1979)
[3] [B-E-W] B. C. Berndt, R. J. Evans, and K. S. Williams, Gauss and Jacobi sums, Wiley Publ., New York1998. · Zbl 0906.11001
[4] Beu F, J. Number Th. 21 pp 141– (1985)
[5] Beu F, J. Number Th. 25 pp 201– (1987)
[6] Beu F., Math. Ann. 271 pp 269– (1985)
[7] (1986), 188-196.
[8] New York 141 pp 57– (1993)
[9] J. Number Th. 53 pp 45– (1995)
[10] Ge I, J. Number Th. 14 pp 362– (1982)
[11] Trans. Amer. Math. Soc. 301 pp 1– (1987)
[12] Greene D., J. Number Th. 23 pp 136– (1986)
[13] Gr-Ko B., Ann. Math. 109 pp 569– (1979)
[14] Ha K., Math. Nachr. 112 pp 245– (1983)
[15] Ish T., Kobe J. Math 6 pp 49– (1989)
[16] [Ko] N. Koblitz, p-adic analysis: a short course on recent work, Cambridge Univ. Press., 1980.
[17] Hiroshima Math. J. 22 pp 461– (1992)
[18] Martin K., Proc. Amer. Math. Soc. 125 pp 3169– (1997)
[19] Ono, Trans. Amer. Math. Soc 350 pp 1205– (1998)
[20] Stu J, Springer Lect. Notes 1240 pp 275– (1984)
[21] Zeilberger, Contemp. Math. 143 pp 579– (1993)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.