×

Supercongruences for truncated \({}_{n+1}F_{n}\) hypergeometric series with applications to certain weight three newforms. (English) Zbl 1152.11327

Summary: We prove general results on supercongruences between values of truncated \(_{n+1}F_{n}\) hypergeometric functions and their character analogs. As a consequence of the main results of this paper, we prove Beukers-type supercongruences for certain weight three newforms.

MSC:

11F33 Congruences for modular and \(p\)-adic modular forms
11S80 Other analytic theory (analogues of beta and gamma functions, \(p\)-adic integration, etc.)
11L05 Gauss and Kloosterman sums; generalizations
Full Text: DOI

References:

[1] Scott Ahlgren, Gaussian hypergeometric series and combinatorial congruences, Symbolic computation, number theory, special functions, physics and combinatorics (Gainesville, FL, 1999) Dev. Math., vol. 4, Kluwer Acad. Publ., Dordrecht, 2001, pp. 1 – 12. · Zbl 1037.33016 · doi:10.1007/978-1-4613-0257-5_1
[2] Scott Ahlgren and Ken Ono, A Gaussian hypergeometric series evaluation and Apéry number congruences, J. Reine Angew. Math. 518 (2000), 187 – 212. · Zbl 0940.33002 · doi:10.1515/crll.2000.004
[3] F. Beukers, Another congruence for the Apéry numbers, J. Number Theory 25 (1987), no. 2, 201 – 210. · Zbl 0614.10011 · doi:10.1016/0022-314X(87)90025-4
[4] Bruce C. Berndt and Ronald J. Evans, Sums of Gauss, Eisenstein, Jacobi, Jacobsthal, and Brewer, Illinois J. Math. 23 (1979), no. 3, 374 – 437. · Zbl 0393.12029
[5] Bruce C. Berndt, Ronald J. Evans, and Kenneth S. Williams, Gauss and Jacobi sums, Canadian Mathematical Society Series of Monographs and Advanced Texts, John Wiley & Sons, Inc., New York, 1998. A Wiley-Interscience Publication. · Zbl 0906.11001
[6] P. Candelas, X. de la Ossa, and F. Rodriguez-Villegas, Calabi-Yau manifolds over finite fields I, http://xxx.lanl.gov/abs/hep-th/0012233. · Zbl 1100.14032
[7] John Greene, Hypergeometric functions over finite fields, Trans. Amer. Math. Soc. 301 (1987), no. 1, 77 – 101. · Zbl 0629.12017
[8] Benedict H. Gross and Neal Koblitz, Gauss sums and the \?-adic \Gamma -function, Ann. of Math. (2) 109 (1979), no. 3, 569 – 581. · Zbl 0406.12010 · doi:10.2307/1971226
[9] Tsuneo Ishikawa, On Beukers’ conjecture, Kobe J. Math. 6 (1989), no. 1, 49 – 51. · Zbl 0687.10003
[10] Eric Mortenson, A supercongruence conjecture of Rodriguez-Villegas for a certain truncated hypergeometric function, J. Number Theory 99 (2003), no. 1, 139 – 147. · Zbl 1074.11045 · doi:10.1016/S0022-314X(02)00052-5
[11] Eric Mortenson, Supercongruences between truncated \(_{2}\)\?\(_{1}\) hypergeometric functions and their Gaussian analogs, Trans. Amer. Math. Soc. 355 (2003), no. 3, 987 – 1007. · Zbl 1074.11044
[12] Ken Ono, Values of Gaussian hypergeometric series, Trans. Amer. Math. Soc. 350 (1998), no. 3, 1205 – 1223. · Zbl 0910.11054
[13] Fernando Rodriguez-Villegas, Hypergeometric families of Calabi-Yau manifolds, Calabi-Yau varieties and mirror symmetry (Toronto, ON, 2001) Fields Inst. Commun., vol. 38, Amer. Math. Soc., Providence, RI, 2003, pp. 223 – 231. · Zbl 1062.11038
[14] F. Rodriguez-Villegas, private communication.
[15] Jan Stienstra and Frits Beukers, On the Picard-Fuchs equation and the formal Brauer group of certain elliptic \?3-surfaces, Math. Ann. 271 (1985), no. 2, 269 – 304. · Zbl 0539.14006 · doi:10.1007/BF01455990
[16] L. Van Hamme, Proof of a conjecture of Beukers on Apéry numbers, Proceedings of the conference on \?-adic analysis (Houthalen, 1987) Vrije Univ. Brussel, Brussels, 1986, pp. 189 – 195. · Zbl 0634.10004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.