×

Holographic integration of \(T\overline{T}\) & \(J\overline{T}\) via \(O(d,d)\). (English) Zbl 1414.81190

Summary: Prompted by the recent developments in integrable single trace \( T\overline{T} \) and \( J\overline{T} \) deformations of 2d CFTs, we analyse such deformations in the context of \(\mathrm{AdS}_3/ \mathrm{CFT}_{2}\) from the dual string worldsheet CFT viewpoint. We observe that the finite form of these deformations can be recast as \(O(d,d)\) transformations, which are an integrated form of the corresponding Exactly Marginal Deformations (EMD) in the worldsheet Wess-Zumino-Witten (WZW) model, thereby generalising the Yang-Baxter class that includes TsT. Furthermore, the equivalence between \(O(d,d)\) transformations and marginal deformations of WZW models, proposed by Hassan & Sen for abelian chiral currents, can be extended to non-abelian chiral currents to recover a well-known constraint on EMD in the worldsheet CFT. We also argue that such EMD are also solvable from the worldsheet theory viewpoint.

MSC:

81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
81R12 Groups and algebras in quantum theory and relations with integrable systems
83E05 Geometrodynamics and the holographic principle
16T25 Yang-Baxter equations

References:

[1] F.A. Smirnov and A.B. Zamolodchikov, On space of integrable quantum field theories, Nucl. Phys.B 915 (2017) 363 [arXiv:1608.05499] [INSPIRE]. · Zbl 1354.81033 · doi:10.1016/j.nuclphysb.2016.12.014
[2] A. Cavaglià, S. Negro, I.M. Szécsényi and R. Tateo, TT¯\[ T\overline{T} \]-deformed 2D quantum field theories, JHEP10 (2016) 112 [arXiv:1608.05534] [INSPIRE]. · Zbl 1390.81494 · doi:10.1007/JHEP10(2016)112
[3] L. McGough, M. Mezei and H. Verlinde, Moving the CFT into the bulk withTT¯\[ T\overline{T} \], JHEP04 (2018) 010 [arXiv:1611.03470] [INSPIRE]. · Zbl 1390.81529 · doi:10.1007/JHEP04(2018)010
[4] S. Dubovsky, V. Gorbenko and M. Mirbabayi, Asymptotic fragility, near AdS2holography andTT¯\[ T\overline{T} \], JHEP09 (2017) 136 [arXiv:1706.06604] [INSPIRE]. · Zbl 1382.83076 · doi:10.1007/JHEP09(2017)136
[5] V. Shyam, Background independent holographic dual toTT¯\[ T\overline{T}\] deformed CFT with large central charge in 2 dimensions, JHEP10 (2017) 108 [arXiv:1707.08118] [INSPIRE]. · Zbl 1383.81148 · doi:10.1007/JHEP10(2017)108
[6] M. Guica, An integrable Lorentz-breaking deformation of two-dimensional CFTs, SciPost Phys.5 (2018) 048 [arXiv:1710.08415] [INSPIRE]. · doi:10.21468/SciPostPhys.5.5.048
[7] P. Kraus, J. Liu and D. Marolf, Cutoff AdS3versus theTT¯\[ T\overline{T}\] deformation, JHEP07 (2018) 027 [arXiv:1801.02714] [INSPIRE]. · Zbl 1395.81230 · doi:10.1007/JHEP07(2018)027
[8] J. Cardy, TheTT¯\[ T\overline{T}\] deformation of quantum field theory as random geometry, JHEP10 (2018) 186 [arXiv:1801.06895] [INSPIRE]. · Zbl 1402.81216 · doi:10.1007/JHEP10(2018)186
[9] W. Cottrell and A. Hashimoto, Comments onTT¯\[ T\overline{T}\] double trace deformations and boundary conditions, Phys. Lett.B 789 (2019) 251 [arXiv:1801.09708] [INSPIRE]. · Zbl 1406.81083 · doi:10.1016/j.physletb.2018.09.068
[10] A. Bzowski and M. Guica, The holographic interpretation ofJT¯\[ J\overline{T} \]-deformed CFTs, JHEP01 (2019) 198 [arXiv:1803.09753] [INSPIRE]. · Zbl 1409.81109 · doi:10.1007/JHEP01(2019)198
[11] O. Aharony and T. Vaknin, The TT*deformation at large central charge, JHEP05 (2018) 166 [arXiv:1803.00100] [INSPIRE]. · Zbl 1391.81113
[12] G. Bonelli, N. Doroud and M. Zhu, TT¯\[ T\overline{T} \]-deformations in closed form, JHEP06 (2018) 149 [arXiv:1804.10967] [INSPIRE]. · Zbl 1395.81153 · doi:10.1007/JHEP06(2018)149
[13] S. Dubovsky, V. Gorbenko and G. Hernández-Chifflet, TT¯\[ T\overline{T}\] partition function from topological gravity, JHEP09 (2018) 158 [arXiv:1805.07386] [INSPIRE]. · Zbl 1398.83068 · doi:10.1007/JHEP09(2018)158
[14] M. Taylor, TT deformations in general dimensions, arXiv:1805.10287 [INSPIRE]. · Zbl 1528.83004
[15] S. Datta and Y. Jiang, TT¯\[ T\overline{T}\] deformed partition functions, JHEP08 (2018) 106 [arXiv:1806.07426] [INSPIRE]. · Zbl 1396.81172 · doi:10.1007/JHEP08(2018)106
[16] R. Conti, L. Iannella, S. Negro and R. Tateo, Generalised Born-Infeld models, Lax operators and theTT¯\[ T\overline{T}\] perturbation, JHEP11 (2018) 007 [arXiv:1806.11515] [INSPIRE]. · Zbl 1404.81222 · doi:10.1007/JHEP11(2018)007
[17] B. Chen, L. Chen and P.-X. Hao, Entanglement entropy inTT¯\[ T\overline{T} \]-deformed CFT, Phys. Rev.D 98 (2018) 086025 [arXiv:1807.08293] [INSPIRE].
[18] T. Hartman, J. Kruthoff, E. Shaghoulian and A. Tajdini, Holography at finite cutoff with a T2deformation, JHEP03 (2019) 004 [arXiv:1807.11401] [INSPIRE]. · Zbl 1414.81206 · doi:10.1007/JHEP03(2019)004
[19] O. Aharony, S. Datta, A. Giveon, Y. Jiang and D. Kutasov, Modular invariance and uniqueness ofTT¯\[ T\overline{T}\] deformed CFT, JHEP01 (2019) 086 [arXiv:1808.02492] [INSPIRE]. · Zbl 1409.81103 · doi:10.1007/JHEP01(2019)086
[20] O. Aharony, S. Datta, A. Giveon, Y. Jiang and D. Kutasov, Modular covariance and uniqueness ofJT¯\[ J\overline{T}\] deformed CFTs, JHEP01 (2019) 085 [arXiv:1808.08978] [INSPIRE]. · Zbl 1409.81102 · doi:10.1007/JHEP01(2019)085
[21] J. Cardy, TT¯\[ T\overline{T}\] deformations of non-Lorentz invariant field theories, arXiv:1809.07849 [INSPIRE].
[22] R. Conti, S. Negro and R. Tateo, TheTT¯\[ T\overline{T}\] perturbation and its geometric interpretation, JHEP02 (2019) 085 [arXiv:1809.09593] [INSPIRE]. · Zbl 1411.81110 · doi:10.1007/JHEP02(2019)085
[23] L. Santilli and M. Tierz, Large N phase transition inTT¯\[ T\overline{T} \]-deformed 2d Yang-Mills theory on the sphere, JHEP01 (2019) 054 [arXiv:1810.05404] [INSPIRE]. · Zbl 1409.81082 · doi:10.1007/JHEP01(2019)054
[24] M. Baggio, A. Sfondrini, G. Tartaglino-Mazzucchelli and H. Walsh, OnTT¯\[ T\overline{T}\] deformations and supersymmetry, arXiv:1811.00533 [INSPIRE]. · Zbl 1445.81052
[25] C.-K. Chang, C. Ferko and S. Sethi, Supersymmetry andTT¯\[ T\overline{T}\] deformations, arXiv:1811.01895 [INSPIRE]. · Zbl 1415.81100
[26] Y. Nakayama, Very specialTJ¯\[ T\overline{J}\] deformed CFT, arXiv:1811.02173 [INSPIRE].
[27] A. Giveon, D. Kutasov and N. Seiberg, Comments on string theory on AdS3, Adv. Theor. Math. Phys.2 (1998) 733 [hep-th/9806194] [INSPIRE]. · Zbl 1041.81575 · doi:10.4310/ATMP.1998.v2.n4.a3
[28] D. Kutasov and N. Seiberg, More comments on string theory on AdS3, JHEP04 (1999) 008 [hep-th/9903219] [INSPIRE]. · Zbl 0953.81071 · doi:10.1088/1126-6708/1999/04/008
[29] A. Giveon, N. Itzhaki and D. Kutasov, TT¯\[ T\overline{T}\] and LST, JHEP07 (2017) 122 [arXiv:1701.05576] [INSPIRE]. · Zbl 1380.81319 · doi:10.1007/JHEP07(2017)122
[30] L. Apolo and W. Song, Strings on warped AdS3viaTT¯\[ T\overline{T}\] deformations, JHEP10 (2018) 165 [arXiv:1806.10127] [INSPIRE]. · Zbl 1402.83090 · doi:10.1007/JHEP10(2018)165
[31] S. Chakraborty, A. Giveon and D. Kutasov, JT¯\[ J\overline{T}\] deformed CFT2and string theory, JHEP10 (2018) 057 [arXiv:1806.09667] [INSPIRE]. · Zbl 1402.81218
[32] A. Giveon, N. Itzhaki and D. Kutasov, A solvable irrelevant deformation of AdS3/CFT2, JHEP12 (2017) 155 [arXiv:1707.05800] [INSPIRE]. · Zbl 1383.81217 · doi:10.1007/JHEP12(2017)155
[33] M. Asrat, A. Giveon, N. Itzhaki and D. Kutasov, Holography beyond AdS, Nucl. Phys.B 932 (2018) 241 [arXiv:1711.02690] [INSPIRE]. · Zbl 1391.81138
[34] G. Giribet, TT¯\[ T\overline{T} \]-deformations, AdS/CFT and correlation functions, JHEP02 (2018) 114 [arXiv:1711.02716] [INSPIRE]. · Zbl 1387.81316 · doi:10.1007/JHEP02(2018)114
[35] M. Baggio and A. Sfondrini, Strings on NS-NS backgrounds as integrable deformations, Phys. Rev.D 98 (2018) 021902 [arXiv:1804.01998] [INSPIRE].
[36] S. Chakraborty, A. Giveon, N. Itzhaki and D. Kutasov, Entanglement beyond AdS, Nucl. Phys.B 935 (2018) 290 [arXiv:1805.06286] [INSPIRE]. · Zbl 1398.81175 · doi:10.1016/j.nuclphysb.2018.08.011
[37] J.P. Babaro, V.F. Foit, G. Giribet and M. Leoni, TT¯\[ T\overline{T}\] type deformation in the presence of a boundary, JHEP08 (2018) 096 [arXiv:1806.10713] [INSPIRE]. · Zbl 1396.83042 · doi:10.1007/JHEP08(2018)096
[38] S. Chakraborty, Wilson loop in aTT¯\[ T\overline{T}\] like deformed CFT2, Nucl. Phys.B 938 (2019) 605 [arXiv:1809.01915] [INSPIRE]. · Zbl 1405.81097 · doi:10.1016/j.nuclphysb.2018.12.003
[39] S. Chaudhuri and J.A. Schwartz, A criterion for integrably marginal operators, Phys. Lett.B 219 (1989) 291 [INSPIRE].
[40] S.F. Hassan and A. Sen, Marginal deformations of WZNW and coset models from O(d, d) transformation, Nucl. Phys.B 405 (1993) 143 [hep-th/9210121] [INSPIRE]. · Zbl 1009.81553 · doi:10.1016/0550-3213(93)90429-S
[41] E. Kiritsis, Exact duality symmetries in CFT and string theory, Nucl. Phys.B 405 (1993) 109 [hep-th/9302033] [INSPIRE]. · Zbl 1009.81551 · doi:10.1016/0550-3213(93)90428-R
[42] M. Henningson and C.R. Nappi, Duality, marginal perturbations and gauging, Phys. Rev.D 48 (1993) 861 [hep-th/9301005] [INSPIRE].
[43] C. Klimčík, Yang-Baxter σ-models and dS/AdS T duality, JHEP12 (2002) 051 [hep-th/0210095] [INSPIRE].
[44] C. Klimčík, On integrability of the Yang-Baxter σ-model, J. Math. Phys.50 (2009) 043508 [arXiv:0802.3518] [INSPIRE]. · Zbl 1215.81099
[45] F. Delduc, M. Magro and B. Vicedo, An integrable deformation of the AdS5 × S5superstring action, Phys. Rev. Lett.112 (2014) 051601 [arXiv:1309.5850] [INSPIRE]. · Zbl 1333.81322 · doi:10.1103/PhysRevLett.112.051601
[46] I. Kawaguchi, T. Matsumoto and K. Yoshida, Jordanian deformations of the AdS5 × S5superstring, JHEP04 (2014) 153 [arXiv:1401.4855] [INSPIRE]. · doi:10.1007/JHEP04(2014)153
[47] B. Hoare and A.A. Tseytlin, Homogeneous Yang-Baxter deformations as non-abelian duals of the AdS5σ-model, J. Phys.A 49 (2016) 494001 [arXiv:1609.02550] [INSPIRE]. · Zbl 1357.81149
[48] R. Borsato and L. Wulff, Integrable deformations of T-dual σ models, Phys. Rev. Lett.117 (2016) 251602 [arXiv:1609.09834] [INSPIRE]. · Zbl 1390.81412
[49] R. Borsato and L. Wulff, On non-abelian T-duality and deformations of supercoset string σ-models, JHEP10 (2017) 024 [arXiv:1706.10169] [INSPIRE]. · Zbl 1383.83155 · doi:10.1007/JHEP10(2017)024
[50] N. Seiberg and E. Witten, String theory and noncommutative geometry, JHEP09 (1999) 032 [hep-th/9908142] [INSPIRE]. · Zbl 0957.81085 · doi:10.1088/1126-6708/1999/09/032
[51] T. Araujo et al., Yang-Baxter σ-models, conformal twists and noncommutative Yang-Mills theory, Phys. Rev.D 95 (2017) 105006 [arXiv:1702.02861] [INSPIRE].
[52] T. Araujo et al., Conformal twists, Yang-Baxter σ-models & holographic noncommutativity, J. Phys.A 51 (2018) 235401 [arXiv:1705.02063] [INSPIRE]. · Zbl 1436.81084
[53] J.-i. Sakamoto, Y. Sakatani and K. Yoshida, Homogeneous Yang-Baxter deformations as generalized diffeomorphisms, J. Phys.A 50 (2017) 415401 [arXiv:1705.07116] [INSPIRE]. · Zbl 1376.81063
[54] J.J. Fernandez-Melgarejo, J.-i. Sakamoto, Y. Sakatani and K. Yoshida, T-folds from Yang-Baxter deformations, JHEP12 (2017) 108 [arXiv:1710.06849] [INSPIRE]. · Zbl 1383.83206 · doi:10.1007/JHEP12(2017)108
[55] J.-I. Sakamoto and Y. Sakatani, Local β-deformations and Yang-Baxter σ-model, JHEP06 (2018) 147 [arXiv:1803.05903] [INSPIRE]. · Zbl 1395.81192
[56] D. Lüst and D. Osten, Generalised fluxes, Yang-Baxter deformations and the O(d,d) structure of non-abelian T-duality, JHEP05 (2018) 165 [arXiv:1803.03971] [INSPIRE]. · Zbl 1391.83115 · doi:10.1007/JHEP05(2018)165
[57] I. Bakhmatov, Ö. Kelekci, E. Ó Colgáin and M.M. Sheikh-Jabbari, Classical Yang-Baxter equation from supergravity, Phys. Rev.D 98 (2018) 021901 [arXiv:1710.06784] [INSPIRE].
[58] I. Bakhmatov, E. Ó Colgáin, M.M. Sheikh-Jabbari and H. Yavartanoo, Yang-Baxter deformations beyond coset spaces (a slick way to do TsT), JHEP06 (2018) 161 [arXiv:1803.07498] [INSPIRE]. · Zbl 1395.83118
[59] R. Borsato and L. Wulff, Non-abelian T-duality and Yang-Baxter deformations of Green-Schwarz strings, JHEP08 (2018) 027 [arXiv:1806.04083] [INSPIRE]. · Zbl 1396.83045 · doi:10.1007/JHEP08(2018)027
[60] T. Matsumoto and K. Yoshida, Towards the gravity/CYBE correspondence — the current status —, J. Phys. Conf. Ser.670 (2016) 012033. · doi:10.1088/1742-6596/670/1/012033
[61] T. Araujo, E. Ó Colgáin and H. Yavartanoo, Embedding the modified CYBE in supergravity, Eur. Phys. J.C 78 (2018) 854 [arXiv:1806.02602] [INSPIRE].
[62] R. Borsato and L. Wulff, Target space supergeometry of η and λ-deformed strings, JHEP10 (2016) 045 [arXiv:1608.03570] [INSPIRE]. · Zbl 1390.81412
[63] R. Borsato and L. Wulff, Marginal deformations of WZW models and the classical Yang-Baxter equation, arXiv:1812.07287 [INSPIRE]. · Zbl 1396.83045
[64] M. Wakimoto, Fock representations of the affine Lie algebra A1(1), Commun. Math. Phys.104 (1986) 605 [INSPIRE]. · Zbl 0587.17009
[65] S. Förste, A truly marginal deformation of SL(2, R) in a null direction, Phys. Lett.B 338 (1994) 36 [hep-th/9407198] [INSPIRE].
[66] D. Israel, C. Kounnas, D. Orlando and P.M. Petropoulos, Electric/magnetic deformations of S3and AdS3and geometric cosets, Fortsch. Phys.53 (2005) 73 [hep-th/0405213] [INSPIRE]. · Zbl 1061.83017 · doi:10.1002/prop.200410190
[67] S. Detournay, D. Orlando, P.M. Petropoulos and P. Spindel, Three-dimensional black holes from deformed Anti-de Sitter, JHEP07 (2005) 072 [hep-th/0504231] [INSPIRE]. · doi:10.1088/1126-6708/2005/07/072
[68] T.H. Buscher, A symmetry of the string background field equations, Phys. Lett.B 194 (1987) 59 [INSPIRE]. · doi:10.1016/0370-2693(87)90769-6
[69] T.H. Buscher, Path integral derivation of quantum duality in nonlinear σ-models, Phys. Lett.B 201 (1988) 466 [INSPIRE]. · doi:10.1016/0370-2693(88)90602-8
[70] M. Roček and E.P. Verlinde, Duality, quotients and currents, Nucl. Phys.B 373 (1992) 630 [hep-th/9110053] [INSPIRE].
[71] O. Lunin and J.M. Maldacena, Deforming field theories with U(1) × U(1) global symmetry and their gravity duals, JHEP05 (2005) 033 [hep-th/0502086] [INSPIRE]. · doi:10.1088/1126-6708/2005/05/033
[72] I. Bakhmatov and E.T. Musaev, Classical Yang-Baxter equation from β-supergravity, JHEP01 (2019) 140 [arXiv:1811.09056] [INSPIRE]. · Zbl 1409.83200 · doi:10.1007/JHEP01(2019)140
[73] D. Osten and S.J. van Tongeren, Abelian Yang-Baxter deformations and TsT transformations, Nucl. Phys.B 915 (2017) 184 [arXiv:1608.08504] [INSPIRE]. · Zbl 1354.81048 · doi:10.1016/j.nuclphysb.2016.12.007
[74] T. Azeyanagi, D.M. Hofman, W. Song and A. Strominger, The spectrum of strings on warped AdS3 × S3, JHEP04 (2013) 078 [arXiv:1207.5050] [INSPIRE]. · Zbl 1342.83318 · doi:10.1007/JHEP04(2013)078
[75] T. Courant, Dirac manifolds, Trans. Amer. Math. Soc.319 (1990) 631. · Zbl 0850.70212 · doi:10.1090/S0002-9947-1990-0998124-1
[76] G. Arutyunov, S. Frolov, B. Hoare, R. Roiban and A.A. Tseytlin, Scale invariance of the η-deformed AdS5 × S5superstring, T-duality and modified type-II equations, Nucl. Phys.B 903 (2016) 262 [arXiv:1511.05795] [INSPIRE]. · Zbl 1332.81167
[77] L. Wulff and A.A. Tseytlin, κ-symmetry of superstring σ-model and generalized 10d supergravity equations, JHEP06 (2016) 174 [arXiv:1605.04884] [INSPIRE]. · Zbl 1390.83426
[78] L. Wulff, Trivial solutions of generalized supergravity vs non-abelian T-duality anomaly, Phys. Lett.B 781 (2018) 417 [arXiv:1803.07391] [INSPIRE]. · Zbl 1398.83128 · doi:10.1016/j.physletb.2018.04.025
[79] Ö. Kelekci, Y. Lozano, N.T. Macpherson and E. Ó Colgáin, Supersymmetry and non-Abelian T-duality in type-II supergravity, Class. Quant. Grav.32 (2015) 035014 [arXiv:1409.7406] [INSPIRE]. · Zbl 1312.83033
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.