×

The \( T\overline{T} \) deformation of quantum field theory as random geometry. (English) Zbl 1402.81216

Summary: We revisit the results of Zamolodchikov and others on the deformation of two-dimensional quantum field theory by the determinant det \(T\) of the stress tensor, commonly referred to as \( T\overline{T} \). Infinitesimally this is equivalent to a random coordinate transformation, with a local action which is, however, a total derivative and therefore gives a contribution only from boundaries or nontrivial topology. We discuss in detail the examples of a torus, a finite cylinder, a disk and a more general simply connected domain. In all cases the partition function evolves according to a linear diffusion-type equation, and the deformation may be viewed as a kind of random walk in moduli space. We also discuss possible generalizations to higher dimensions.

MSC:

81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
62P35 Applications of statistics to physics
81R12 Groups and algebras in quantum theory and relations with integrable systems

References:

[1] A.B. Zamolodchikov, Expectation value of composite field\( T\overline{T} \)in two-dimensional quantum field theory, hep-th/0401146 [INSPIRE].
[2] Dubovsky, S.; Flauger, R.; Gorbenko, V., Solving the simplest theory of quantum gravity, JHEP, 09, 133, (2012) · Zbl 1397.83036 · doi:10.1007/JHEP09(2012)133
[3] Dubovsky, S.; Gorbenko, V.; Mirbabayi, M., Natural tuning: towards a proof of concept, JHEP, 09, 045, (2013) · Zbl 1342.83081 · doi:10.1007/JHEP09(2013)045
[4] Mussardo, G.; Simon, P., Bosonic type S matrix, vacuum instability and CDD ambiguities, Nucl. Phys., B 578, 527, (2000) · Zbl 0976.81030 · doi:10.1016/S0550-3213(99)00806-8
[5] Dubovsky, S.; Gorbenko, V.; Mirbabayi, M., Asymptotic fragility, near AdS_{2} holography and \( T\overline{T} \), JHEP, 09, 136, (2017) · Zbl 1382.83076 · doi:10.1007/JHEP09(2017)136
[6] Jackiw, R., Lower dimensional gravity, Nucl. Phys., B 252, 343, (1985) · doi:10.1016/0550-3213(85)90448-1
[7] Teitelboim, C., Gravitation and Hamiltonian structure in two space-time dimensions, Phys. Lett., B 126, 41, (1983) · doi:10.1016/0370-2693(83)90012-6
[8] Dubovsky, S.; Gorbenko, V.; Hernández-Chifflet, G., \( T\overline{T} \) partition function from topological gravity, JHEP, 09, 158, (2018) · Zbl 1398.83068 · doi:10.1007/JHEP09(2018)158
[9] Caselle, M.; Fioravanti, D.; Gliozzi, F.; Tateo, R., Quantisation of the effective string with TBA, JHEP, 07, 071, (2013) · Zbl 1342.81625 · doi:10.1007/JHEP07(2013)071
[10] Smirnov, FA; Zamolodchikov, AB, On space of integrable quantum field theories, Nucl. Phys., B 915, 363, (2017) · Zbl 1354.81033 · doi:10.1016/j.nuclphysb.2016.12.014
[11] M. Guica, An integrable Lorentz-breaking deformation of two-dimensional CFTs, arXiv:1710.08415 [INSPIRE].
[12] Cavaglià, A.; Negro, S.; Szécsényi, IM; Tateo, R., \( T\overline{T} \)-deformed 2D quantum field theories, JHEP, 10, 112, (2016) · Zbl 1390.81494 · doi:10.1007/JHEP10(2016)112
[13] McGough, L.; Mezei, M.; Verlinde, H., Moving the CFT into the bulk with \( T\overline{T} \), JHEP, 04, 010, (2018) · Zbl 1390.81529 · doi:10.1007/JHEP04(2018)010
[14] Giveon, A.; Itzhaki, N.; Kutasov, D., \( T\overline{T} \) and LST, JHEP, 07, 122, (2017) · Zbl 1380.81319 · doi:10.1007/JHEP07(2017)122
[15] Shyam, V., Background independent holographic dual to \( T\overline{T} \) deformed CFT with large central charge in 2 dimensions, JHEP, 10, 108, (2017) · Zbl 1383.81148 · doi:10.1007/JHEP10(2017)108
[16] Giribet, G., \( T\overline{T} \)-deformations, AdS/CFT and correlation functions, JHEP, 02, 114, (2018) · Zbl 1387.81316 · doi:10.1007/JHEP02(2018)114
[17] Kraus, P.; Liu, J.; Marolf, D., Cutoff AdS_{3} versus the \( T\overline{T} \) deformation, JHEP, 07, 027, (2018) · Zbl 1395.81230 · doi:10.1007/JHEP07(2018)027
[18] Cardy, J., Quantum quenches to a critical point in one dimension: some further results, J. Stat. Mech., 1602, (2016) · Zbl 1456.81049 · doi:10.1088/1742-5468/2016/02/023103
[19] Bernard, D.; Doyon, B., A hydrodynamic approach to non-equilibrium conformal field theories, J. Stat. Mech., 1603, (2016) · Zbl 1456.82543 · doi:10.1088/1742-5468/2016/03/033104
[20] Cardy, JL; Peschel, I., Finite size dependence of the free energy in two-dimensional critical systems, Nucl. Phys., B 300, 377, (1988) · doi:10.1016/0550-3213(88)90604-9
[21] Affleck, I.; Ludwig, AWW, Universal noninteger ‘ground state degeneracy’ in critical quantum systems, Phys. Rev. Lett., 67, 161, (1991) · Zbl 0990.81566 · doi:10.1103/PhysRevLett.67.161
[22] A.J. Bray, Theory of phase-ordering kinetics, Adv. Phys.43 (1994) 357 [cond-mat/9501089] [INSPIRE].
[23] Allen, SM; Cahn, JW, A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening, Acta Metall., 27, 1085, (1979) · doi:10.1016/0001-6160(79)90196-2
[24] J.J. Arenzon, A.J. Bray, L.F. Cugliandolo and A. Sicilia, Exact results for curvature-driven coarsening in two dimensions, Phys. Rev. Lett.98 (2007) 145701 [cond-mat/0608270].
[25] Blanchard, T.; Cugliandolo, LF; Picco, M.; Tartaglia, A., Critical percolation in the dynamics of the 2d ferromagnetic Ising model, J. Stat. Mech., 11, 113201, (2017) · Zbl 1457.82166 · doi:10.1088/1742-5468/aa9348
[26] J. Cardy, \( T\overline{T} \)deformations of non-Lorentz invariant field theories, arXiv:1809.07849 [INSPIRE].
[27] M. Taylor, \( T\overline{T} \)deformations in general dimensions, arXiv:1805.10287 [INSPIRE].
[28] Aharony, O.; Vaknin, T., The \( T\overline{T} \) deformation at large central charge, JHEP, 05, 166, (2018) · Zbl 1391.81113
[29] Bonelli, G.; Doroud, N.; Zhu, M., \( T\overline{T} \)-deformations in closed form, JHEP, 06, 149, (2018) · Zbl 1395.81153 · doi:10.1007/JHEP06(2018)149
[30] Datta, S.; Jiang, Y., \( T\overline{T} \) deformed partition functions, JHEP, 08, 106, (2018) · Zbl 1396.81172 · doi:10.1007/JHEP08(2018)106
[31] O. Aharony, S. Datta, A. Giveon, Y. Jiang and D. Kutasov, Modular invariance and uniqueness of\( T\overline{T} \)deformed CFT, arXiv:1808.02492 [INSPIRE].
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.