×

Theorems on existence and global dynamics for the Einstein equations. (English) Zbl 1316.83008

Summary: This article is a guide to theorems on existence and global dynamics of solutions of the Einstein equations. It draws attention to open questions in the field. The local-in-time Cauchy problem, which is relatively well understood, is surveyed. Global results for solutions with various types of symmetry are discussed. A selection of results from Newtonian theory and special relativity that offer useful comparisons is presented. Treatments of global results in the case of small data and results on constructing spacetimes with prescribed singularity structure or late-time asymptotics are given. A conjectural picture of the asymptotic behaviour of general cosmological solutions of the Einstein equations is built up. Some miscellaneous topics connected with the main theme are collected in a separate section.
Update to author’s paper [Zbl 1316.83007], see also the updates [Zbl 0944.83002; Zbl 1024.83009]:
1. All sections have been updated and new references added with the result that the total number of references has increased by 40 per cent in comparison with the previous version
2. Section 3.4 (weak null singularities and Price’s law) is new
3. Section 3.6 (spatially compact solutions) includes a new discussion of Gowdy spacetimes
4. Section 6.3 (asymptotics for a phase of accelerated expansion) is new
5. The old section 7.3 has been much expanded to constitute the new sections 7.3-7.6.
6. Section 8.4 (cosmic censorship in Gowdy spacetimes) is new.
7. Section 9.6 (the geodesic hypothesis) is new

MSC:

83-02 Research exposition (monographs, survey articles) pertaining to relativity and gravitational theory
83C15 Exact solutions to problems in general relativity and gravitational theory
83C05 Einstein’s equations (general structure, canonical formalism, Cauchy problems)
83A05 Special relativity
83C75 Space-time singularities, cosmic censorship, etc.

References:

[1] Alinhac, S., and Gérard, P., Opérateurs pseudo-différentiels et Théorème de Nash-Moser, Savoirs Actuels, (EDP Sciences, Les Ulis, France, 1991). · Zbl 0791.47044
[2] Anderson, MT; Grove, K. (ed.); Peterson, P. (ed.), Scalar curvature and geometrization structures for 3-manifolds, No. vol. 30, 49-82 (1997), Cambridge, U.K.; New York, U.S.A. · Zbl 0890.57026
[3] Anderson, M.T., “On stationary vacuum solutions to the Einstein equations”, Ann. Henri Poincare, 1, 977-994, (2000). · Zbl 1005.53055 · doi:10.1007/PL00001021
[4] Anderson, M.T., “On the structure of solutions to the static vacuum Einstein equations”, Ann. Henri Poincare, 1, 995-1042, (2000). · Zbl 0981.83013 · doi:10.1007/PL00001026
[5] Anderson, M.T., “Asymptotic behavior of future-complete cosmological space-times”, Class. Quantum Grav., 21, S11-S28, (2004). · Zbl 1040.83041 · doi:10.1088/0264-9381/21/3/002
[6] Anderson, M.T., “Existence and stability of even dimensional asymptotically de Sitter spaces”, (August, 2004). URL (cited on 17 March 2005): http://arXiv.org/abs/gr-qc/0408072.
[7] Anderson, M.T., and Chruściel, P.T., “Asymptotically simple solutions of the vacuum Einstein equations in even dimensions”, (December, 2004). URL (cited on 4 April 2005): http://arXiv.org/abs/gr-qc/0412020. · Zbl 1094.83002
[8] Andersson, L.; Chruściel, PT (ed.); Friedrich, H. (ed.), The global existence problem in general relativity, 71-120 (2004), Basel, Switzerland; Boston, U.S.A. · Zbl 1061.83001 · doi:10.1007/978-3-0348-7953-8_3
[9] Andersson, L., Chruściel, P.T., and Friedrich, H., “On the regularity of solutions to the Yamabe equation and the existence of smooth hyperboloidal initial data for Einstein’s field equations”, Commun. Math. Phys., 149, 587-612, (1992). · Zbl 0764.53027 · doi:10.1007/BF02096944
[10] Andersson, L., and Moncrief, V., “Elliptic-hyperbolic systems and the Einstein equations”, Ann. Henri Poincare, 4, 1-34, (2003). · Zbl 1028.83005
[11] Andersson, L.; Moncrief, V.; Chruściel, PT (ed.); Friedrich, H. (ed.), Future Complete Vacuum Spacetimes, 299-330 (2004), Basel, Switzerland; Boston, U.S.A. · Zbl 1105.83001 · doi:10.1007/978-3-0348-7953-8_8
[12] Andersson, L., Moncrief, V., and Tromba, A., “On the global evolution problem in 2+1 gravity”, J. Geom. Phys., 23, 191-205, (1997). Related online version (cited on 4 April 2005):http://arXiv.org/abs/gr-qc/9610013. · Zbl 0898.58003 · doi:10.1016/S0393-0440(97)87804-7
[13] Andersson, L., and Rendall, A.D., “Quiescent Cosmological Singularities”, Commun. Math. Phys., 218, 479-511, (2001). · Zbl 0979.83036 · doi:10.1007/s002200100406
[14] Andersson, L., van Elst, H., Lim, W.C., and Uggla, C., “Asymptotic silence of generic cosmological singularities”, Phys. Rev. Lett., 94, 051101, (2005). · doi:10.1103/PhysRevLett.94.051101
[15] Andréasson, H., “Regularity of the gain term and strong <Emphasis Type=”Italic“>L1 convergence to equilibrium for the relativistic Boltzmann equation”, SIAM J. Math. Anal., 27, 1386-1405, (1996). · Zbl 0858.76072 · doi:10.1137/0527076
[16] Andréasson, H., “Global Foliations of Matter Spacetimes with Gowdy Symmetry”, Commun. Math. Phys., 206, 337-365, (1999). · Zbl 0949.83009 · doi:10.1007/s002200050708
[17] Andréasson, H., “The Einstein-Vlasov System/Kinetic Theory”, Living Rev. Relativity, 8, lrr-2005-2, (2005). URL (cited on 22 April 2005): http://www.livingreviews.org/lrr-2005-2. · Zbl 1316.83021
[18] Andréasson, H., Calogero, S., and Rein, G., “Global classical solutions to the spherically symmetric Nordström-Vlasov system”, (August, 2003). URL (cited on 31 March 2005):http://arXiv.org/abs/gr-qc/0311027. · Zbl 1119.83023
[19] Andréasson, H., Rein, G., and Rendall, A.D., “On the Einstein-Vlasov system with hyperbolic symmetry”, Math. Proc. Camb. Phil. Soc., 134, 529-549, (2001). Related online version (cited on 28 January 2002): http://arXiv.org/abs/gr-qc/0110089. · Zbl 1028.83012 · doi:10.1017/S0305004102006606
[20] Andréasson, H., Rendall, A.D., and Weaver, M., “Existence of CMC and constant areal time foliations in <Emphasis Type=”Italic“>T2 symmetric spacetimes with Vlasov matter”, Commun. Part. Diff. Eq., 29, 237-262, (2004). · Zbl 1063.35145 · doi:10.1081/PDE-120028852
[21] Anguige, K., “A class of plane symmetric perfect-fluid cosmologies with a Kasner-like singularity”, Class. Quantum Grav., 17, 2117-2128, (2000). · Zbl 0967.83041 · doi:10.1088/0264-9381/17/10/306
[22] Anguige, K., “A class of plane symmetric perfect-fluid cosmologies with a Kasner-like singularity”, Class. Quantum Grav., 17, 2117-2128, (2000). Related online version (cited on 29 January 2002): http://arXiv.org/abs/gr-qc/0005086. · Zbl 0967.83041 · doi:10.1088/0264-9381/17/10/306
[23] Anguige, K., “Isotropic Cosmological Singularities. III. The Cauchy Problem for the Inhomogeneous Conformal Einstein-Vlasov Equations”, Ann. Phys. (N.Y.), 282, 395-419, (2000). · Zbl 0973.83042 · doi:10.1006/aphy.2000.6037
[24] Anguige, K., and Tod, K.P., “Isotropic cosmological singularities 1: Polytropic perfect fluid spacetimes”, Ann. Phys. (N.Y.), 276, 257-293, (1999). · Zbl 1003.83027 · doi:10.1006/aphy.1999.5946
[25] Anguige, K., and Tod, K.P., “Isotropic cosmological singularities 2: The Einstein-Vlasov system”, Ann. Phys. (N.Y.), 276, 294-320, (1999). · Zbl 1003.83028 · doi:10.1006/aphy.1999.5947
[26] Anninos, P., “Computational Cosmology: From the Early Universe to the Large Scale Structure”, Living Rev. Relativity, 4, lrr-2001-2, (2001). URL (cited on 24 January 2002): http://www.livingreviews.org/lrr-2001-2. · Zbl 1023.83002
[27] Arkeryd, L., “On the strong <Emphasis Type=”Italic“>L1 trend to equilibrium for the Boltzmann equation”, Stud. Appl. Math., 87, 283-288, (1992). · Zbl 0762.35089 · doi:10.1002/sapm1992873283
[28] Armendariz-Picon, C., Mukhanov, V., and Steinhardt, P.J., “Essentials of k-essence”, Phys. Rev. D, 53, 10351, (2001).
[29] Arnold, VI; Ilyashenko, YS; Anosov, DV (ed.); Arnold, VI (ed.), Ordinary differential equations, No. vol. 1, 1-148 (1988), Berlin, Germany; New York, U.S.A.
[30] Aubin, T., Nonlinear Analysis on Manifolds. Monge-Ampère equations, vol. 252 of Grundlehren der mathematischen Wissenschaften, (Springer, Berlin, Germany; New York, U.S.A., 1982). · Zbl 0512.53044 · doi:10.1007/978-1-4612-5734-9
[31] Baouendi, M.S., and Goulaouic, C., “Remarks on the abstract form of nonlinear Cauchy-Kovalevsky theorems”, Commun. Part. Diff. Eq., 2, 1151-1162, (1977). · Zbl 0391.35006 · doi:10.1080/03605307708820057
[32] Barnes, A.P., LeFloch, P.G., Schmidt, B.G., and Stewart, J.M., “The Glimm scheme for perfect fluids on plane-symmetric Gowdy spacetimes”, Class. Quantum Grav., 21, 5043-5074, (2004). · Zbl 1080.83011 · doi:10.1088/0264-9381/21/22/003
[33] Barrow, J.D., and Kodama, H., “All universes great and small”, Int. J. Mod. Phys. D, 10, 785-790, (2001). · Zbl 1155.83362 · doi:10.1142/S0218271801001554
[34] Bartnik, R., “Remarks on cosmological spacetimes and constant mean curvature hypersurfaces”, Commun. Math. Phys., 117, 615-624, (1988). · Zbl 0647.53044 · doi:10.1007/BF01218388
[35] Bartnik, R., “Quasi-spherical metrics and prescribed scalar curvature”, J. Differ. Geom., 37, 31-71, (1993). · Zbl 0786.53019 · doi:10.4310/jdg/1214453422
[36] Bartnik, R., and Fodor, G., “On the restricted validity of the thin sandwich conjecture”, Phys. Rev. D, 48, 3596-3599, (1993). · doi:10.1103/PhysRevD.48.3596
[37] Bartnik, R., and McKinnon, J., “Particlelike Solutions of the Einstein-Yang-Mills Equations”, Phys. Rev. Lett., 61, 141-143, (1988). · doi:10.1103/PhysRevLett.61.141
[38] Batt, J., Faltenbacher, W., and Horst, E., “Stationary Spherically Symmetric Models in Stellar Dynamics”, Arch. Ration. Mech. Anal., 93, 159-183, (1986). · Zbl 0605.70008 · doi:10.1007/BF00279958
[39] Bauer, S., “Post-Newtonian approximation of the Vlasov-Nordstroöm system”, (October, 2004). URL (cited on 13 April 2005): http://arXiv.org/abs/math-ph/0410048.
[40] Bauer, S., and Kunze, M., “The Darwin approximation of the relativistic Vlasov-Maxwell system”, (January, 2004). URL (cited on 13 April 2005): http://arXiv.org/abs/math-ph/0401012. · Zbl 1126.82041
[41] Beale, J.T., Hou, T.Y., and Lowengrub, J.S., “Growth rates for the linearized motion of fluid interfaces away from equilibrium”, Commun. Pure Appl. Math., 46, 1269-1301, (1993). · Zbl 0796.76041 · doi:10.1002/cpa.3160460903
[42] Beig, R., and Schmidt, B.G., “Static, self-gravitating elastic bodies”, Proc. R. Soc. London, Ser. A, 459, 109-115, (2002). Related online version (cited on 8 February 2002): http://arXiv.org/abs/gr-qc/0202024. · Zbl 1116.85309 · doi:10.1098/rspa.2002.1031
[43] Beig, R., and Schmidt, B.G., “Relativistic elasticity”, Class. Quantum Grav., 20, 889-904, (2003). · Zbl 1027.83017 · doi:10.1088/0264-9381/20/5/308
[44] Beig, R., and Schmidt, B.G., “Relativistic elastostatics I: bodies in rigid rotation”, (November, 2004). URL (cited on 4 April 2004): http://arXiv.org/abs/gr-qc/0411145. · Zbl 1077.83004
[45] Belinskii, V.A., “Turbulence of a gravitational field near a cosmological singularity”, J. Exp. Theor. Phys. Lett., 56, 421-425, (1992).
[46] Belinskii, V.A., Grishchuk, L.P., Zeldovich, Y.B., and Khalatnikov, I.M., “Inflationary stages in cosmological models with a scalar field”, Sov. Phys. JETP, 62, 195-203, (1986).
[47] Belinskii, V.A., Khalatnikov, I.M., and Lifshitz, E.M., “Oscillatory approach to a singular point in the relativistic cosmology”, Adv. Phys., 19, 525-573, (1970). · doi:10.1080/00018737000101171
[48] Belinskii, V.A., Khalatnikov, I.M., and Lifshitz, E.M., “A general solution of the Einstein equations with a time singularity”, Adv. Phys., 31, 639-667, (1982). · doi:10.1080/00018738200101428
[49] Berger, B.K., “Numerical Approaches to Spacetime Singularities”, Living Rev. Relativity, 5, lrr-2002-1, (2002). URL (cited on 28 January 2002): http://www.livingreviews.org/lrr-2002-1. · Zbl 1023.83003
[50] Berger, B.K., Chruściel, P.T., Isenberg, J.A., and Moncrief, V., “Global Foliations of Vacuum Spacetimes with <Emphasis Type=”Italic“>T2 Isometry”, Ann. Phys. (N.Y.), 260, 117-148, (1997). · Zbl 0929.58013 · doi:10.1006/aphy.1997.5707
[51] Berger, B.K., Chruściel, P.T., and Moncrief, V., “On “Asymptotically Flat” Space-Times with G2-Invariant Cauchy Surfaces“, <Emphasis Type=”Italic“>Ann. Phys. (N.Y.), <Emphasis Type=”Bold”>237, 322-354, (1995). · Zbl 0967.83507 · doi:10.1006/aphy.1995.1012
[52] Berger, B.K., Garfinkle, D., Isenberg, J., Moncrief, V., and Weaver, M., “The singularity in generic gravitational collapse is spacelike, local and oscillatory”, Mod. Phys. Lett. A, 13, 1565-1574, (1998). · doi:10.1142/S0217732398001649
[53] Berger, B.K., and Moncrief, V., “Exact U(1) symmetric cosmologies with local Mixmaster dynamics”, Phys. Rev. D, 62, 023509-1-023509-8, (2000).
[54] Beyer, H., “The spectrum of adiabatic stellar oscillations”, J. Math. Phys., 36, 4792-4814, (1995). · Zbl 0871.47013 · doi:10.1063/1.530921
[55] Beyer, H., “On the stability of the Kerr metric”, Commun. Math. Phys., 221, 659-676, (2001). · Zbl 0989.83009 · doi:10.1007/s002200100494
[56] Bicak, J., Ledvinka, T., Schmidt, B.G., and Zofka, M., “Static fluid cylinders and their fields: global solutions”, Class. Quantum Grav., 21, 1583-1608, (2004). · Zbl 1062.83018 · doi:10.1088/0264-9381/21/6/019
[57] Bieli, R., “Algebraic expansions for curvature coupled scalar field models”, (April, 2005). URL (cited on 28 April 2005): http://arXiv.org/abs/gr-qc/0504119. · Zbl 1085.83011 · doi:10.1088/0264-9381/22/20/015
[58] Binney, J., and Tremaine, S., Galactic Dynamics, Princeton Series in Astrophysics, (Princeton University Press, Princeton, U.S.A., 1987). · Zbl 1130.85301
[59] Bizoń, P., “Equivariant self-similar wave maps from Minkowski spacetime into 3-sphere”, Commun. Math. Phys., 215, 45-56, (2000). · Zbl 0992.53050 · doi:10.1007/s002200000291
[60] Bizoń, P., Chmaj, T., and Tabor, Z., “Formation of singularities for equivariant 2+1 dimensional wave maps into 2-sphere”, Nonlinearity, 14, 1041-1053, (2001). · Zbl 0988.35010 · doi:10.1088/0951-7715/14/5/308
[61] Bizoń, P., and Tabor, Z., “On blowup of Yang-Mills fields”, Phys. Rev. D, 64, 121701-1-4, (2001). · doi:10.1103/PhysRevD.64.121701
[62] Bizoń, P., and Wasserman, A.G., “On the existence of self-similar spherically symmetric wave maps coupled to gravity”, Class. Quantum Grav., 19, 3309-3322, (2002). Related online version (cited on 5 February 2002): http://arXiv.org/abs/gr-qc/0201046. · Zbl 1005.83021 · doi:10.1088/0264-9381/19/12/313
[63] Bojowald, M., “Loop quantum cosmology: recent progress”, (February, 2004). URL (cited on 21 April 2005): http://arXiv.org/abs/gr-qc/0402053. · doi:10.1007/BF02705198
[64] Börner, G., The Early Universe: Facts and Fiction, Texts and Monographs in Physics, (Springer, Berlin, Germany; New York, U.S.A., 1993), 3rd edition. · doi:10.1007/978-3-662-02918-3
[65] Bourguignon, J.-P., “Stabilite par deformation non-lineaire de la metrique de Minkowski (d’apres D. Christodoulou et S. Klainerman)”, Asterisque, 201-203, 321-358, (1991). · Zbl 0754.53060
[66] Brauer, U., Singularitaten in relativistischen Materiemodellen, Ph.D. Thesis, (Universität Potsdam, Potsdam, Germany, 1995).
[67] Brauer, U., Rendall, A.D., and Reula, O.A., “The cosmic no-hair theorem and the nonlinear stability of homogeneous Newtonian cosmological models”, Class. Quantum Grav., 11, 2283-2296, (1994). · Zbl 0815.53092 · doi:10.1088/0264-9381/11/9/010
[68] Bressan, A., “The Unique Limit of the Glimm Scheme”, Arch. Ration. Mech. Anal., 130, 205-230, (1995). · Zbl 0835.35088 · doi:10.1007/BF00392027
[69] Bressan, A., Hyperbolic Systems of Conservation Laws: The One-Dimensional Cauchy Problem, vol. 20 of Oxford Lecture Series in Mathematics and Its Applications, (Oxford University Press, Oxford, U.K.; New York, U.S.A., 2000). · Zbl 0997.35002
[70] Bressan, A., and Colombo, R.M., “The Semigroup Generated by 2 × 2 Conservation Laws”, Arch. Ration. Mech. Anal., 133, 1-75, (1995). · Zbl 0849.35068 · doi:10.1007/BF00375350
[71] Brodbeck, O., Heusler, M., Straumann, N., and Volkov, M., “Rotating solitons and non-rotating non-static black holes”, Phys. Rev. Lett., 79, 4310-4313, (1997). · doi:10.1103/PhysRevLett.79.4310
[72] Burnett, G.A., and Rendall, A.D., “Existence of maximal hypersurfaces in some spherically symmetric spacetimes”, Class. Quantum Grav., 13, 111-123, (1996). · Zbl 0843.53047 · doi:10.1088/0264-9381/13/1/010
[73] Caciotta, G., and Nicolò, F., “Global characteristic problem for Einstein vacuum equations with small initial data: (I) The initial data constraints”, J. Hyperbol. Differ. Equations, 2, 201-277, (2005). · Zbl 1082.35151 · doi:10.1142/S0219891605000439
[74] Caldwell, R.R., Kamionkowski, M., and Weinberg, N.N., “Phantom energy and cosmic doomsday”, Phys. Rev. Lett., 91, 071301, (2003). · doi:10.1103/PhysRevLett.91.071301
[75] Calogero, S., “The Newtonian limit of the relativistic Boltzmann equation”, J. Math. Phys., 45, 4042-4052, (2004). · Zbl 1064.82030 · doi:10.1063/1.1793328
[76] Cantor, M., “A necessary and sufficient condition for York data to specify an asymptotically flat spacetime”, J. Math. Phys., 20, 1741-1744, (1979). · Zbl 0427.35072 · doi:10.1063/1.524259
[77] Carr, B.J., Coley, A.A., Goliath, M., Nilsson, U.S., and Uggla, C., “Critical phenomena and a new class of self-similar spherically symmetric perfect-fluid solutions”, Phys. Rev. D, 61, 081502-1-5, (2000). · doi:10.1103/PhysRevD.61.081502
[78] Carr, B.J., Coley, A.A., Goliath, M., Nilsson, U.S., and Uggla, C., “The state space and physical interpretation of self-similar spherically symmetric perfect-fluid models”, Class. Quantum Grav., 18, 303-324, (2001). · Zbl 0979.83042 · doi:10.1088/0264-9381/18/2/309
[79] Cercignani, C., The Boltzmann Equation and Its Applications, vol. 67 of Applied Mathematical Sciences, (Springer, Berlin, Germany; New York, U.S.A., 1994). · Zbl 0646.76001
[80] Cercignani, C., Illner, R., and Pulvirenti, M., The Mathematical Theory of Dilute Gases, vol. 106 of Applied Mathematical Sciences, (Springer, Berlin, Germany; New York, U.S.A., 1988). · Zbl 0813.76001
[81] Chae, D., “Global existence of spherically symmetric solutions to the coupled Einstein and nonlinear Klein-Gordon system.”, Class. Quantum Grav., 18, 4589-4605, (2001). · Zbl 0998.83009 · doi:10.1088/0264-9381/18/21/313
[82] Chae, D., “Global existence of solutions to the coupled Einstein and Maxwell-Higgs systems in the spherical symmetry”, Ann. Henri Poincare, 4, 35-62, (2003). · Zbl 1025.83007 · doi:10.1007/s00023-003-0121-0
[83] Chemin, J.-Y., “Remarques sur l’apparition de singularites dans les ecoulements Euleriens compressibles”, Commun. Math. Phys., 133, 323-339, (1990). · Zbl 0711.76076 · doi:10.1007/BF02097370
[84] Chen, J., “Conservation laws for the relativistic <Emphasis Type=”Italic“>p-system”, Commun. Part. Diff. Eq., 20, 1605-1646, (1995). · Zbl 0877.35096 · doi:10.1080/03605309508821145
[85] Chen, J., “Conservation Laws for Relativistic Fluid Dynamics”, Arch. Ration. Mech. Anal., 139, 377-398, (1997). · Zbl 0909.76108 · doi:10.1007/s002050050057
[86] Choptuik, M.W., “Universality and Scaling in the Gravitational Collapse of a Massless Scalar Field”, Phys. Rev. Lett., 70, 9-12, (1993). · doi:10.1103/PhysRevLett.70.9
[87] Choquet-Bruhat, Y., “<Emphasis Type=”Italic“>C∞ solutions of hyperbolic nonlinear equations applications to G. R. G.”, Gen. Relativ. Gravit., 2, 359-362, (1971). · Zbl 0331.35041 · doi:10.1007/BF00758154
[88] Choquet-Bruhat, Y.; Chruściel, PT (ed.); Friedrich, H. (ed.), Future complete Einsteinian spacetimes with U(1) isometry group, the unpolarized case, 251-298 (2004), Basel, Switzerland; Boston, U.S.A. · Zbl 1064.83005 · doi:10.1007/978-3-0348-7953-8_7
[89] Choquet-Bruhat, Y., “Future complete <Emphasis Type=”Italic“>S1 symmetric solutions of the Einstein-Maxwell-Higgs system”, (January, 2005). URL (cited on 1 March 2005): http://arXiv.org/abs/gr-qc/0501052.
[90] Choquet-Bruhat, Y., and Cotsakis, S., “Global hyperbolicity and completeness”, J. Geom. Phys., 43, 345-350, (2002). Related online version (cited on 20 February 2002): http://arXiv.org/abs/gr-qc/0201057. · Zbl 1022.83002 · doi:10.1016/S0393-0440(02)00028-1
[91] Choquet-Bruhat, Y., and Geroch, R., “Global aspects of the Cauchy problem in general relativity”, Commun. Math. Phys., 14, 329-335, (1969). · Zbl 0182.59901 · doi:10.1007/BF01645389
[92] Choquet-Bruhat, Y., Isenberg, J.A., and Moncrief, V., “Topologically general U(1) symmetric Einstein spacetimes with AVTD behavior”, (February, 2005). URL (cited on 13 April 2005): http://arXiv.org/abs/gr-qc/0502104.
[93] Choquet-Bruhat, Y., Isenberg, J.A., and York, J.W., “Einstein constraints on asymptotically Euclidean manifolds”, Phys. Rev. D, 61, 084034-1-20, (2000). · doi:10.1103/PhysRevD.61.084034
[94] Choquet-Bruhat, Y., and Moncrief, V., “Future global in time Einsteinian spacetimes with U(1) isometry group”, Ann. Henri Poincare, 2, 1007-1064, (2001). · Zbl 0998.83007 · doi:10.1007/s00023-001-8602-5
[95] Choquet-Bruhat, Y.; York, JW; Held, A. (ed.), The Cauchy problem, 99-172 (1980), New York, U.S.A.
[96] Christodoulou, D., “Global existence of generalised solutions of the spherically symmetric Einstein-scalar equations in the large”, Commun. Math. Phys., 106, 587-621, (1986). · Zbl 0613.53047 · doi:10.1007/BF01463398
[97] Christodoulou, D., “The problem of a self-gravitating scalar field”, Commun. Math. Phys., 105, 337-361, (1986). · Zbl 0608.35039 · doi:10.1007/BF01205930
[98] Christodoulou, D., “A mathematical theory of gravitational collapse”, Commun. Math. Phys., 109, 613-647, (1987). · Zbl 0613.53049 · doi:10.1007/BF01208960
[99] Christodoulou, D., “The structure and uniqueness of generalised solutions of the spherically symmetric Einstein-scalar equations”, Commun. Math. Phys., 109, 591-611, (1987). · Zbl 0613.53048 · doi:10.1007/BF01208959
[100] Christodoulou, D., “The formation of black holes and singularities in spherically symmetric gravitational collapse”, Commun. Pure Appl. Math., 44, 339-373, (1991). · Zbl 0728.53061 · doi:10.1002/cpa.3160440305
[101] Christodoulou, D., “Bounded variation solutions of the spherically symmetric Einstein-scalar field equations”, Commun. Pure Appl. Math., 46, 1131-1220, (1993). · Zbl 0853.35122 · doi:10.1002/cpa.3160460803
[102] Christodoulou, D., “Examples of naked singularity formation in the gravitational collapse of a scalar field”, Ann. Math., 140, 607-653, (1994). · Zbl 0822.53066 · doi:10.2307/2118619
[103] Christodoulou, D., “Self-Gravitating Fluids: A Two-Phase Model”, Arch. Ration. Mech. Anal., 130, 343-400, (1995). · Zbl 0841.76097 · doi:10.1007/BF00375144
[104] Christodoulou, D., “Self-Gravitating Fluids: The Continuation and Termination of a Free Phase Boundary”, Arch. Ration. Mech. Anal., 133, 333-398, (1996). · Zbl 1075.83517 · doi:10.1007/BF00375147
[105] Christodoulou, D., “Self-Gravitating Fluids: The Formation of a Free Phase Boundary in the Phase Transition from Soft to Hard”, Arch. Ration. Mech. Anal., 134, 97-154, (1996). · Zbl 0863.76098 · doi:10.1007/BF00379551
[106] Christodoulou, D., “The instability of naked singularities in the gravitational collapse of a scalar field”, Ann. Math. (2), 149, 183-217, (1999). · Zbl 1126.83305 · doi:10.2307/121023
[107] Christodoulou, D., and Klainerman, S., “Asymptotic properties of linear field equations in Minkowski space”, Commun. Pure Appl. Math., 43, 137-199, (1990). · Zbl 0715.35076 · doi:10.1002/cpa.3160430202
[108] Christodoulou, D., and Klainerman, S., The global nonlinear stability of the Minkowski space, vol. 41 of Princeton Mathematical Series, (Princeton University Press, Princeton, U.S.A., 1993). · Zbl 0827.53055
[109] Christodoulou, D., and Lindblad, H., “On the motion of the free surface of a liquid”, Commun. Pure Appl. Math., 53, 1536-1602, (2000). · Zbl 1031.35116 · doi:10.1002/1097-0312(200012)53:12<1536::AID-CPA2>3.0.CO;2-Q
[110] Christodoulou, D., and Ó Murchadha, N., “The boost problem in general relativity”, Commun. Math. Phys., 80, 271-300, (1981). · Zbl 0477.35081 · doi:10.1007/BF01213014
[111] Christodoulou, D., and Tahvildar-Zadeh, A.S., “On the asymptotic behaviour of spherically symmetric wave maps”, Duke Math. J., 71, 31-69, (1993). · Zbl 0791.58105 · doi:10.1215/S0012-7094-93-07103-7
[112] Christodoulou, D., and Tahvildar-Zadeh, A.S., “On the regularity of spherically symmetric wave maps”, Commun. Pure Appl. Math., 46, 1041-1091, (1993). · Zbl 0744.58071 · doi:10.1002/cpa.3160460705
[113] Chruściel, P.T., “On Space-Time with <Emphasis Type=”Italic“>U(1) × <Emphasis Type=”Italic“>U(1) Symmetric Compact Cauchy Surfaces”, Ann. Phys. (N.Y.), 202, 100-150, (1990). · Zbl 0727.53078 · doi:10.1016/0003-4916(90)90341-K
[114] Chruściel, P.T., On Uniqueness in the Large of Solutions of Einstein’s Equations (Strong Cosmic Censorship), vol. 27 of Proceedings of the Centre for Mathematics and its Applications, (Australian National University Press, Canberra, Australia, 1991). · Zbl 0747.53050
[115] Chruściel, P.T., “Semi-global existence and convergence of solutions of the Robinson-Trautman (2-dimensional Calabi) equation”, Commun. Math. Phys., 137, 289-313, (1991). · Zbl 0729.53071 · doi:10.1007/BF02431882
[116] Chruściel, P.T., Isenberg, J.A., and Moncrief, V., “Strong cosmic censorship in polarised Gowdy spacetimes”, Class. Quantum Grav., 7, 1671-1680, (1990). · Zbl 0703.53081 · doi:10.1088/0264-9381/7/10/003
[117] Chruściel, P.T., Isenberg, J.A., and Pollack, D., “Gluing initial data sets for general relativity”, Phys. Rev. Lett., 93, 081101, (2004). · doi:10.1103/PhysRevLett.93.081101
[118] Claudel, C.M., and Newman, K.P., “The Cauchy problem for quasi-linear hyperbolic evolution problems with a singularity in the time”, Proc. R. Soc. London, Ser. A, 454, 1073-1107, (1998). · Zbl 0916.35064 · doi:10.1098/rspa.1998.0197
[119] Coley, A.A., and van den Hoogen, R.J., “The dynamics of multi-scalar field cosmological models and assisted inflation”, Phys. Rev. D, 62, 023517, (2000). · doi:10.1103/PhysRevD.62.023517
[120] Coley, A.A., and Wainwright, J., “Qualitative analysis of two-fluid Bianchi cosmologies”, Class. Quantum Grav., 9, 651-665, (1992). · Zbl 0743.53039 · doi:10.1088/0264-9381/9/3/008
[121] Corvino, J., “Scalar curvature deformation and a gluing construction for the Einstein constraint equations”, Commun. Math. Phys., 214, 137-189, (2000). · Zbl 1031.53064 · doi:10.1007/PL00005533
[122] Dafermos, M., “Stability and instability of the Cauchy horizon for the spherically symmetric Einstein-Maxwell-scalar field equations”, Ann. Math., 158, 875-928, (2003). · Zbl 1055.83002 · doi:10.4007/annals.2003.158.875
[123] Dafermos, M., “On naked singularities and the collapse of self-gravitating Higgs fields”, (March, 2004). URL (cited on 4 April 2005): http://arXiv.org/abs/gr-qc/0403033. · Zbl 1129.83014
[124] Dafermos, M., “Spherically symmetric spacetimes with a trapped surface”, (March, 2004). URL (cited on 31 March 2005): http://arXiv.org/abs/gr-qc/0403032. · Zbl 1072.83026
[125] Dafermos, M., and Rendall, A.D., “An extension principle for the Einstein-Vlasov system in spherical symmetry”, (November, 2004). URL (cited on 1 April 2005): http://arXiv.org/abs/gr-qc/0411075. · Zbl 1138.83008
[126] Dafermos, M., and Rodnianski, I., “A proof of Price’s law for the collapse of a self-gravitating scalar field”, (September, 2003). URL (cited on 31 March 2005): http://arXiv.org/abs/gr-qc/0309115. · Zbl 1088.83008
[127] Dain, S., “Trapped surfaces as boundaries for the constraint equations”, Class. Quantum Grav., 21, 555-574, (2004). · Zbl 1050.83019 · doi:10.1088/0264-9381/21/2/017
[128] Dain, S., and Nagy, G., “Initial data for fluid bodies in general relativity”, Phys. Rev. D, 65, 084020-1-15, (2002). Related online version (cited on 30 January 2002): http://arXiv.org/abs/gr-qc/0201091.
[129] Damour, T., “Cosmological singularities, Einstein billiards and Lorentzian Kac-Moody algebras”, (January, 2005). URL (cited on 28 July 2005): http://arXiv.org/abs/gr-qc/0501064. · Zbl 1086.83027
[130] Damour, T., Henneaux, M., Rendall, A.D., and Weaver, M., “Kasner-like behaviour for subcritical Einstein-matter systems”, Ann. Henri Poincare, 3, 1049-1111, (2002). URL (cited on 20 February 2002): http://arXiv.org/abs/gr-qc/0202069. · Zbl 1011.83038 · doi:10.1007/s000230200000
[131] de Oliveira, H.P., Ozorio de Almeida, A.M., Damião Soares, I., and Tonini, E.V., “Homoclinic chaos in the dynamics of a general Bianchi type-IX model”, Phys. Rev. D, 65, 083511-1-9, (2002). Related online version (cited on 17 February 2002): http://arXiv.org/abs/gr-qc/0202047.
[132] DiPerna, R.J., and Lions, P.-L., “On the Cauchy problem for Boltzmann equations: Global existence and weak stability”, Ann. Math., 130, 321-366, (1989). · Zbl 0698.45010 · doi:10.2307/1971423
[133] Dossa, M., “Espaces de Sobolev non isotropes, à poids et problèmes de Cauchy quasi-linéaires sur un conoïde caractéristique”, Ann. Inst. Henri Poincare A, 66, 37-107, (1997). · Zbl 0880.35074
[134] Dudyhski, M., and Ekiel-Jezewska, M.L., “Global existence proof for the relativistic Boltzmann equation”, J. Stat. Phys., 66, 991-1001, (1992). · Zbl 0899.76314 · doi:10.1007/BF01055712
[135] Eardley, D.M., and Moncrief, V., “The global existence of Yang-Mills fields in <Emphasis Type=”Italic“>M3+1”, Commun. Math. Phys., 83, 171-212, (1982). · Zbl 0496.35061 · doi:10.1007/BF01976040
[136] Ehlers, J.; Ferrarese, G. (ed.), The Newtonian limit of general relativity, International Conference in Memory of Carlo Cattaneo, Elba, 9-13 July 1989, Naples, Italy
[137] Evans, L.C., Partial Differential Equations, vol. 19 of Graduate Studies in Mathematics, (American Mathematical Society, Providence, U.S.A., 1998). · Zbl 0902.35002
[138] Felder, G., Kofman, L., and Starobinsky, A.A., “Caustics in tachyon matter and other Born-Infeld scalars”, J. High Energy Phys., 0209, 026, (2001).
[139] Fischer, A., and Moncrief, V., “The Einstein flow, the <Emphasis Type=”Italic“>σ-constant and the geometriztion of 3-manifolds”, Class. Quantum Grav., 16, L79-L87, (1999). · Zbl 0939.83006 · doi:10.1088/0264-9381/16/11/102
[140] Fjöallborg, M., “On the cylindrically symmetric Einstein-Vlasov system”, (March, 2005). URL (cited on 31 March 2005): http://arXiv.org/abs/gr-qc/0503098.
[141] Friedrich, H., “Existence and structure of past asymptotically simple solutions of Einstein’s field equations with positive cosmological constant”, J. Geom. Phys., 3, 101-117, (1986). · Zbl 0592.53061 · doi:10.1016/0393-0440(86)90004-5
[142] Friedrich, H., “On the global existence and asymptotic behaviour of solutions to the Einstein-Yang-Mills equations”, J. Differ. Geom., 34, 275-345, (1991). · Zbl 0737.53070 · doi:10.4310/jdg/1214447211
[143] Friedrich, H., “Einstein equations and conformal structure: Existence of anti-de Sitter-type spacetimes”, J. Geom. Phys., 17, 125-184, (1995). · Zbl 0840.53055 · doi:10.1016/0393-0440(94)00042-3
[144] Friedrich, H., “Hyperbolic reductions of Einstein’s field equations”, Class. Quantum Grav., 13, 1451-1469, (1996). · Zbl 0851.58044 · doi:10.1088/0264-9381/13/6/014
[145] Friedrich, H., “Evolution equations for gravitating ideal fluid bodies in general relativity”, Phys. Rev. D, 57, 2317-2322, (1998). · doi:10.1103/PhysRevD.57.2317
[146] Friedrich, H., “Gravitational fields near spacelike and null infinity”, J. Geom. Phys., 24, 83-172, (1998). · Zbl 0896.53053 · doi:10.1016/S0393-0440(97)82168-7
[147] Friedrich, H., and Nagy, G., “The initial boundary value problem for Einstein’s vacuum field equations”, Commun. Math. Phys., 201, 619-655, (1999). · Zbl 0947.83007 · doi:10.1007/s002200050571
[148] Friedrich, H.; Rendall, AD; Schmidt, BG (ed.), The Cauchy problem for the Einstein equations, No. vol. 540 (2000), Berlin, Germany; New York, U.S.A. · Zbl 1006.83003
[149] Fritelli, S., and Reula, O.A., “On the Newtonian limit of general relativity”, Commun. Math. Phys., 166, 221-235, (1994). · Zbl 0812.35147 · doi:10.1007/BF02112314
[150] Garfinkle, D., “Numerical simulations of generic singuarities”, Phys. Rev. Lett., 93, 124017, (2004). · doi:10.1103/PhysRevLett.93.161101
[151] Gibbons, G.W., “Phantom matter and the cosmological constant”, (February, 2003). URL (cited on 21 April 2005): http://arXiv.org/abs/gr-qc/0302199.
[152] Gibbons, G.W., “Thoughts on tachyon cosmology”, Class. Quantum Grav., 20, S321-S346, (2003). · Zbl 1041.83013 · doi:10.1088/0264-9381/20/12/301
[153] Glassey, R.T., and Schaeffer, J., “The ‘two and one half dimensional’ relativistic Vlasov-Maxwell system”, Commun. Math. Phys., 185, 257-284, (1997). · Zbl 0883.35118 · doi:10.1007/s002200050090
[154] Glassey, R.T., and Schaeffer, J., “The Relativistic Vlasov-Maxwell System in Two Space Dimensions: Part I”, Arch. Ration. Mech. Anal., 141, 331-354, (1998). · Zbl 0907.76100 · doi:10.1007/s002050050079
[155] Glassey, R.T., and Schaeffer, J., “The Relativistic Vlasov-Maxwell System in Two Space Dimensions: Part II”, Arch. Ration. Mech. Anal., 141, 355-374, (1998). · Zbl 0907.76100 · doi:10.1007/s002050050080
[156] Glassey, R.T., and Strauss, W., “Asymptotic stability of the relativistic Maxwellian”, Publ. Res. Inst. Math. Sci., 29, 301-347, (1993). · Zbl 0776.45008 · doi:10.2977/prims/1195167275
[157] Glimm, J., “Solutions in the large for nonlinear hyperbolic systems of equations”, Commun. Pure Appl. Math., 18, 697-715, (1965). · Zbl 0141.28902 · doi:10.1002/cpa.3160180408
[158] Goliath, M., Nilsson, U.S., and Uggla, C., “Spatially self-similar spherically symmetric perfect-fluid models”, Class. Quantum Grav., 15, 167-186, (1998). · Zbl 0908.53054 · doi:10.1088/0264-9381/15/1/012
[159] Goliath, M., Nilsson, U.S., and Uggla, C., “Timelike self-similar spherically symmetric perfect-fluid models”, Class. Quantum Grav., 15, 2841-2863, (1998). · Zbl 0948.83017 · doi:10.1088/0264-9381/15/9/028
[160] Goode, S.W., and Wainwright, J., “Isotropic singularities in cosmological models”, Class. Quantum Grav., 2, 99-115, (1985). · Zbl 0575.53078 · doi:10.1088/0264-9381/2/1/010
[161] Grassin, M., “Global smooth solutions to Euler equations for a perfect gas”, Indiana Univ. Math. J., 47, 1397-1432, (1998). · Zbl 0930.35134 · doi:10.1512/iumj.1998.47.1608
[162] Gundlach, C., “Critical phenomena in gravitational collapse”, Adv. Theor. Math. Phys., 2, 1-49, (1998). · Zbl 0907.53057 · doi:10.4310/ATMP.1998.v2.n1.a1
[163] Gundlach, C., “Critical Phenomena in Gravitational Collapse”, Living Rev. Relativity, 2, lrr-1999-4, (1999). URL (cited on 22 December 1999): http://www.livingreviews.org/lrr-1999-4.
[164] Guo, Y., “Smooth irrotational flows in the large to the Euler-Poisson system”, Commun. Math. Phys., 195, 249-265, (1998). · Zbl 0929.35112 · doi:10.1007/s002200050388
[165] Guo, Y., and Rein, G., “Isotropic steady states in stellar dynamics”, Commun. Math. Phys., 219, 607-629, (2001). · Zbl 0974.35093 · doi:10.1007/s002200100434
[166] Guo, Y., and Strauss, W., “Nonlinear instability of double-humped equilibria”, Ann. Inst. Henri Poincare C, 12, 339-352, (1995). · Zbl 0836.35130 · doi:10.1016/S0294-1449(16)30160-3
[167] Guo, Y.; Tahvildar-Zadeh, AS; Chen, G-Q (ed.); DiBenedetto, E. (ed.), Formation of singularities in relativistic fluid dynamics and in spherically symmetric plasma dynamics, International Conference on Nonlinear Partial Differential Equations and Applications, Northwestern University, March 21-24, 1998, Providence, U.S.A. · Zbl 0973.76100
[168] Halliwell, J.J., “Scalar fields in cosmology with an exponential potential”, Phys. Lett. B, 185, 341-344, (1987). · doi:10.1016/0370-2693(87)91011-2
[169] Hamilton, R., “Three manifolds of positive Ricci curvature”, J. Differ. Geom., 17, 255-306, (1982). · Zbl 0504.53034 · doi:10.4310/jdg/1214436922
[170] Hartman, P., Ordinary Differential Equations, (Birkhäuser, Boston, U.S.A., 1982), 2nd edition. · Zbl 0476.34002
[171] Hauser, I., and Ernst, F.J., “Proof of a generalized Geroch conjecture for the hyperbolic Ernst equation”, Gen. Relativ. Gravit., 33, 195-293, (2001). · Zbl 0984.83008 · doi:10.1023/A:1002701301339
[172] Heilig, U., “On the existence of rotating stars in general relativity”, Commun. Math. Phys., 166, 457-493, (1995). · Zbl 0813.53058 · doi:10.1007/BF02099884
[173] Heinzle, M., Rendall, A.D., and Uggla, C., “Theory of Newtonian self-gravitating stationary spherically symmetric systems”, (August, 2004). URL (cited on 30 March 2005): http://arXiv.org/abs/math-ph/0408045. · Zbl 1086.85002
[174] Heinzle, M., Röhr, N., and Uggla, C., “Spherically symmetric relativistic stellar structures”, Class. Quantum Grav., 20, 4567-4586, (2003). · Zbl 1053.83013 · doi:10.1088/0264-9381/20/21/004
[175] Heinzle, M., Röohr, N., and Uggla, C., “Matter and dynamics in closed cosmologies”, (June, 2004). URL (cited on 1 April 2005): http://arXiv.org/abs/math-ph/0406072.
[176] Henkel, O., “Global prescribed mean curvature foliations in cosmological space-times. II”, J. Math. Phys., 43, 2466-2485, (2001). Related online version (cited on 28 January 2002): http://arXiv.org/abs/gr-qc/0110082. · Zbl 1059.83004 · doi:10.1063/1.1466883
[177] Henkel, O., “Global prescribed mean curvature foliations in cosmological space-times. I”, J. Math. Phys., 43, 2439-2465, (2002). Related online version (cited on 28 January 2002): http://arXiv.org/abs/gr-qc/0110081. · Zbl 1059.83004 · doi:10.1063/1.1466882
[178] Henkel, O., “Local prescribed mean curvature foliations in cosmological spacetimes”, Math. Proc. Camb. Phil. Soc., 134, 551-571, (2003). Related online version (cited on 28 January 2002): http://arXiv.org/abs/gr-qc/0108003. · Zbl 1055.53053 · doi:10.1017/S0305004102006515
[179] Hertog, T., Horowitz, G.T., and Maeda, K., “Generic cosmic censorship violation in anti de Sitter space.”, Phys. Rev. Lett., 92, 131101, (2004). · doi:10.1103/PhysRevLett.92.131101
[180] Hervik, S., van den Hoogen, R., and Coley, A.A., “Future asymptotic behaviour of tilted Bianchi models of type IV and VII <Emphasis Type=”Italic“>h”, Class. Quantum Grav., 22, 607-634, (2005). · Zbl 1060.83008 · doi:10.1088/0264-9381/22/3/010
[181] Heusler, M., Black Hole Uniqueness Theorems, (Cambridge University Press, Cambridge, U.K.; New York, U.S.A., 1996). · Zbl 0945.83001 · doi:10.1017/CBO9780511661396
[182] Heusler, M., “Stationary black holes: Uniqueness and beyond”, Living Rev. Relativity, 1, lrr-1998-6, (1998). URL (cited on 12 December 1999): http://www.livingreviews.org/lrr-1998-6.
[183] Hewitt, C., Horwood, J.T., and Wainwright, J., “Asymptotic dynamics of the exceptional Bianchi cosmologies”, Class. Quantum Grav., 20, 1743-1756, (2003). · Zbl 1034.83028 · doi:10.1088/0264-9381/20/9/311
[184] Hewitt, C., and Wainwright, J., “The asymptotic regimes of tilted Bianchi II cosmologies”, Gen. Relativ. Gravit., 33, 65-94, (2001). · Zbl 0977.83126 · doi:10.1023/A:1002075902953
[185] Hod, S., and Piran, T., “Mass inflation in dynamical collapse of a charged scalar field”, Phys. Rev. Lett., 81, 1554-1557, (1998). · Zbl 0962.83026 · doi:10.1103/PhysRevLett.81.1554
[186] Hubbard, J.H., and West, B.H., Differential Equations: A Dynamical Systems Approach. Ordinary Differential Equations, vol. 5 of Texts in Applied Mathematics, (Springer, Berlin, 1991), 3rd edition. · Zbl 0724.34001 · doi:10.1007/978-1-4612-0937-9
[187] Isenberg, J.A., “Constant mean curvature solutions of the Einstein constraint equations on closed manifolds”, Class. Quantum Grav., 12, 2249-2274, (1995). · Zbl 0840.53056 · doi:10.1088/0264-9381/12/9/013
[188] Isenberg, J.A., and Kichenassamy, S., “Asymptotic behaviour in polarized <Emphasis Type=”Italic“>T2-symmetric vacuum space-times”, J. Math. Phys., 40, 340-352, (1999). · Zbl 1061.83512 · doi:10.1063/1.532775
[189] Isenberg, J.A., Mazzeo, R., and Pollack, D., “On the topology of vacuum spacetimes”, Ann. Henri Poincare, 3, 369-383, (2003). · Zbl 1026.83008 · doi:10.1007/s00023-003-0133-9
[190] Isenberg, J.A., and Moncrief, V., “Asymptotic Behaviour of the Gravitational Field and the Nature of Singularities in Gowdy Spacetimes”, Ann. Phys. (N.Y.), 199, 84-122, (1990). · Zbl 0723.53061 · doi:10.1016/0003-4916(90)90369-Y
[191] Isenberg, J.A., and Moncrief, V., “A set of nonconstant mean curvature solutions of the Einstein constraint equations on closed manifolds”, Class. Quantum Grav., 13, 1819-1847, (1996). · Zbl 0860.53056 · doi:10.1088/0264-9381/13/7/015
[192] Isenberg, J.A., and Moncrief, V., “Asymptotic behavior of polarized and half-polarized U(1) symmetric vacuum spacetimes”, Class. Quantum Grav., 19, 5361-5386, (2002). · Zbl 1025.83008 · doi:10.1088/0264-9381/19/21/305
[193] Isenberg, J.A., and Ó Murchadha, N., “Non CMC conformal data sets which do not produce solutions of the Einstein constraint equations”, Class. Quantum Grav., 21, S233-S241, (2004). · Zbl 1042.83007 · doi:10.1088/0264-9381/21/3/013
[194] Isenberg, J.A., and Rendall, A.D., “Cosmological spacetimes not covered by a constant mean curvature slicing”, Class. Quantum Grav., 15, 3679-3688, (1998). · Zbl 0946.83003 · doi:10.1088/0264-9381/15/11/025
[195] Isenberg, J.A., and Weaver, M., “On the area of the symmetry orbits in <Emphasis Type=”Italic“>T2 symmetric spacetimes”, Class. Quantum Grav., 20, 3783-3796, (2003). · Zbl 1049.83004 · doi:10.1088/0264-9381/20/16/316
[196] Jensen, L.G., and Stein-Schabes, J.A., “Is inflation natural?”, Phys. Rev. D, 35, 1146-1150, (1987). · doi:10.1103/PhysRevD.35.1146
[197] John, F., Partial Differential Equations, vol. 1 of Applied Mathematical Sciences, (Springer, Berlin, Germany; New York, U.S.A., 1982), 4th edition. · Zbl 0472.35001 · doi:10.1007/978-1-4684-9333-7
[198] John, F., Nonlinear Wave Equations, Formation of Singularities, vol. 2 of University Lecture Series, (American Mathematical Society, Providence, U.S.A., 1990). · Zbl 0716.35043
[199] Jurke, T., “On future asymptotics of polarized Gowdy <Emphasis Type=”Italic“>T3-models”, Class. Quantum Grav., 20, 173-192, (2003). · Zbl 1039.83003 · doi:10.1088/0264-9381/20/1/313
[200] Kichenassamy, S., “The blow-up problem for exponential nonlinearities”, Commun. Part. Diff. Eq., 21, 125-162, (1996). · Zbl 0846.35083 · doi:10.1080/03605309608821177
[201] Kichenassamy, S., “Fuchsian equations in Sobolev spaces and blow-up”, J. Differ. Equations, 125, 299-327, (1996). · Zbl 0863.58067 · doi:10.1006/jdeq.1996.0033
[202] Kichenassamy, S., Nonlinear Wave Equations, vol. 194 of Monographs and Textbooks in Pure and Applied Mathematics, (Marcel Dekker, New York, U.S.A., 1996). · Zbl 0845.35001
[203] Kichenassamy, S., and Littman, W., “Blow-up surfaces for nonlinear wave equations, I”, Commun. Part. Diff. Eq., 18, 431-452, (1993). · Zbl 0803.35093 · doi:10.1080/03605309308820936
[204] Kichenassamy, S., and Littman, W., “Blow-up surfaces for nonlinear wave equations, II”, Commun. Part. Diff. Eq., 18, 1869-1899, (1993). · Zbl 0803.35094 · doi:10.1080/03605309308820997
[205] Kichenassamy, S., and Rendall, A.D., “Analytic description of singularities in Gowdy spacetimes”, Class. Quantum Grav., 15, 1339-1355, (1998). · Zbl 0949.83050 · doi:10.1088/0264-9381/15/5/016
[206] Kind, S., and Ehlers, J., “Initial boundary value problem for the spherically symmetric Einstein equations for a perfect fluid”, Class. Quantum Grav., 18, 2123-2136, (1993). · Zbl 0789.35157 · doi:10.1088/0264-9381/10/10/020
[207] Kitada, Y., and Maeda, K., “Cosmic no-hair theorem in power-law inflation”, Phys. Rev. D, 45, 1416-1419, (1992). · doi:10.1103/PhysRevD.45.1416
[208] Kitada, Y., and Maeda, K., “Cosmic no-hair theorem in homogeneous cosmological models. I. Bianchi models.”, Class. Quantum Grav., 10, 703-734, (1993). · Zbl 0774.53049 · doi:10.1088/0264-9381/10/4/008
[209] Klainerman, S., “A commuting vector fields approach to Strichartz-type inequalities and applications to quasi-linear wave equations”, Int. Math. Res. Notices, 2001 (5), 221-274, (2001). · Zbl 0993.35022 · doi:10.1155/S1073792801000137
[210] Klainerman, S., and Machedon, M., “Finite energy solutions of the Yang-Mills equations in <Emphasis Type=”Bold“>R3+1”, Ann. Math., 142, 39-119, (1995). · Zbl 0827.53056 · doi:10.2307/2118611
[211] Klainerman, S., and Nicolò, F., “On local and global aspects of the Cauchy problem in general relativity”, Class. Quantum Grav., 16, R73-R157, (1999). · Zbl 0944.83001 · doi:10.1088/0264-9381/16/8/201
[212] Klainerman, S., and Nicolò, F., The evolution problem in general relativity, (Birkhäuser, Boston, U.S.A., 2003). · Zbl 1010.83004 · doi:10.1007/978-1-4612-2084-8
[213] Klainerman, S., and Nicolò, F., “Peeling properties of asymptotically flat solutions to the Einstein vacuum equations”, Class. Quantum Grav., 20, 3215-3257, (2003). · Zbl 1045.83016 · doi:10.1088/0264-9381/20/14/319
[214] Klainerman, S., and Rodnianski, I., “Rough solution for the Einstein vacuum equations”, (September, 2001). URL (cited on 1 March 2002): http://arXiv.org/abs/math.AP/0109173. · Zbl 0985.58009
[215] Klainerman, S., and Rodnianski, I., “Causal geometry of Einstein-vacuum spacetimes with finite curvature flux”, (September, 2003). URL (cited on 30 March 2005): http://arXiv.org/abs/math.AP/0309459. · Zbl 1136.58018
[216] Klainerman, S., and Rodnianski, I., “A geometric approach to the Littlewood-Paley theory”, (September, 2003). URL (cited on 30 March 2005): http://arXiv.org/abs/math.AP/0309463. · Zbl 1206.35080
[217] Kleihaus, B., and Kunz, J., “Static axially symmetric Einstein-Yang-Mills-dilaton solutions: I. Regular solutions”, Phys. Rev. D, 57, 834-856, (1998). · Zbl 1042.83513 · doi:10.1103/PhysRevD.57.834
[218] Krieger, J., “Stability of spherically symmetric wave maps”, (March, 2005). URL (cited on 30 April 2005): http://arXiv.org/abs/math.AP/0503048. · Zbl 1387.35392
[219] Kunze, M., and Rendall, A.D., “Simplified models of electromagnetic and gravitational radiation damping.”, Class. Quantum Grav., 18, 3573-3587, (2001). · Zbl 0991.83017 · doi:10.1088/0264-9381/18/17/311
[220] Kunze, M., and Rendall, A.D., “The Vlasov-Poisson system with radiation damping.”, Ann. Henri Poincare, 2, 857-886, (2001). · Zbl 0987.82014 · doi:10.1007/s00023-001-8596-z
[221] LeBlanc, V.G., “Asymptotic states of magnetic Bianchi I cosmologies”, Class. Quantum Grav., 14, 2281-2301, (1997). · Zbl 0880.58034 · doi:10.1088/0264-9381/14/8/025
[222] LeBlanc, V.G., “Bianchi II magnetic cosmologies”, Class. Quantum Grav., 15, 1607-1626, (1998). · Zbl 0946.83066 · doi:10.1088/0264-9381/15/6/016
[223] LeBlanc, V.G., Kerr, D., and Wainwright, J., “Asymptotic states of magnetic Bianchi VI0 cosmologies”, Class. Quantum Grav., 12, 513-541, (1995). · Zbl 0817.53049 · doi:10.1088/0264-9381/12/2/020
[224] Lee, H., “Asymptotic behaviour of the Einstein-Vlasov system with a positive cosmological constant”, Math. Proc. Camb. Phil. Soc., 137, 495-509, (2004). · Zbl 1054.83015 · doi:10.1017/S0305004104007960
[225] Lee, H., “The Einstein-Vlasov system with a scalar field”, (April, 2004). URL (cited on 30 March 2005): http://arXiv.org/abs/gr-qc/0404007.
[226] Lifshitz, E.M., and Khalatnikov, I.M., “Investigations in relativistic cosmology”, Adv. Phys., 12, 185-249, (1963). · Zbl 0112.44306 · doi:10.1080/00018736300101283
[227] Lim, W.C., van Elst, H., Uggla, C., and Wainwright, J., “Asymptotic isotropization in inhomogeneous cosmology”, Phys. Rev. D, 69, 103507, (2004). · Zbl 1405.83081 · doi:10.1103/PhysRevD.69.103507
[228] Lin, S.S., “Stability of gaseous stars in spherically symmetric motions”, SIAM J. Math. Anal., 28, 539-569, (1997). · Zbl 0871.35012 · doi:10.1137/S0036141095292883
[229] Lin, X.F., and Wald, R.M., “Proof of the closed universe recollapse conjecture for general Bianchi type IX cosmologies”, Phys. Rev. D, 41, 2444-2448, (1990). · doi:10.1103/PhysRevD.41.2444
[230] Lindblad, H., “Well-posedness for the linearized motion of a compressible fluid with free surface boundary”, Commun. Math. Phys., 236, 281-310, (2003). · Zbl 1038.35073 · doi:10.1007/s00220-003-0812-x
[231] Lindblad, H., “Well-posedness for the motion of an incompressible liquid with free surface boundary”, (February, 2004). URL (cited on 29 March 2005): http://arXiv.org/abs/math.AP/0402327. · Zbl 1025.35017
[232] Lindblad, H., and Rodnianski, I., “The weak null condition for Einstein’s equations.”, C. R. Acad. Sci., 336, 901-906, (2003). · Zbl 1045.35101 · doi:10.1016/S1631-073X(03)00231-0
[233] Lindblad, H., and Rodnianski, I., “The global stability of the Minkowski space-time in harmonic gauge”, (November, 2004). URL (cited on 29 March 2005): http://arXiv.org/abs/math.AP/0411109. · Zbl 1192.53066
[234] Lindblom, L., and Masood-ul Alam, A.K.M., “On the spherical symmetry of static stellar models”, Commun. Math. Phys., 162, 123-145, (1994). · Zbl 0797.53077 · doi:10.1007/BF02105189
[235] Lions, P.-L., “Compactness in Boltzmann’s equation via Fourier integral operators and applications”, J. Math. Kyoto Univ., 34, 391-427, (1994). · Zbl 0831.35139 · doi:10.1215/kjm/1250519017
[236] Lions, P.-L., and Perthame, B., “Propagation of moments and regularity for the 3-dimensional Vlasov-Poisson system”, Invent. Math., 105, 415-430, (1991). · Zbl 0741.35061 · doi:10.1007/BF01232273
[237] Longair, M.S., Galaxy Formation, Astronomy and Astrophysics Library, (Springer, Berlin, Germany; New York, U.S.A., 1998). · Zbl 0899.00013 · doi:10.1007/978-3-662-03571-9
[238] Maartens, R., “Brane-World Gravity”, Living Rev. Relativity, 7, lrr-2004-7, (2004). URL (cited on 22 April 2005): http://www.livingreviews.org/lrr-2004-7. · Zbl 1071.83571
[239] Majda, A., Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables, vol. 53 of Applied Mathematical Sciences, (Springer, Berlin, Germany; New York, U.S.A., 1984). · Zbl 0537.76001 · doi:10.1007/978-1-4612-1116-7
[240] Makino, T., “On spherically symmetric stellar models in general relativity”, J. Math. Kyoto Univ., 38, 55-69, (1998). · Zbl 0919.53032 · doi:10.1215/kjm/1250518159
[241] Makino, T., “On the spiral structure of the (R,M) diagram for a stellar model of the Tolman-Oppenheimer-Volkoff equation”, Funkcialaj Ekvacioj, 43, 471-489, (2000). · Zbl 1142.83303
[242] Marthn-Garcha, J.M., and Gundlach, C., “Self-similar spherically symmetric solutions of the massless Einstein-Vlasov system”, Phys. Rev. D, 65, 084026-1-18, (2002). Related online version (cited on 17 January 2002): http://arXiv.org/abs/gr-qc/0112009.
[243] Maxwell, D., “Rough solution of the Einstein constraint equations”, (May, 2004). URL (cited on 15 February 2005): http://arXiv.org/abs/gr-qc/0405088.
[244] Maxwell, D., “Solutions of the Einstein constraint equations with apparent horizon boundaries”, Commun. Math. Phys., 253, 561-583, (2004). · Zbl 1065.83011 · doi:10.1007/s00220-004-1237-x
[245] Misner, C.W., “Mixmaster Universe”, Phys. Rev. Lett., 22, 1071-1074, (1967). · Zbl 0177.28701 · doi:10.1103/PhysRevLett.22.1071
[246] Moncrief, V., “Global Properties of Gowdy Spacetimes with <Emphasis Type=”Italic“>T3 × <Emphasis Type=”Italic“>R Topology”, Ann. Phys. (N.Y.), 132, 87-107, (1981). · doi:10.1016/0003-4916(81)90270-0
[247] Moncrief, V., “Neighbourhoods of Cauchy horizons in cosmological spacetimes with one Killing field”, Ann. Phys. (N.Y.), 141, 83-103, (1982). · Zbl 0539.53046 · doi:10.1016/0003-4916(82)90273-1
[248] Moncrief, V., and Eardley, D.M., “The global existence problem and cosmic censorship in general relativity”, Gen. Relativ. Gravit., 13, 887-892, (1981). · doi:10.1007/BF00764275
[249] Moss, I., and Sahni, V., “Anisotropy in the chaotic inflationary universe”, Phys. Lett. B, 178, 159-162, (1986). · doi:10.1016/0370-2693(86)91488-7
[250] Mucha, P.B., “Global existence for the Einstein-Boltzmann equation in flat Robertson-Walker spacetime”, Commun. Math. Phys., 203, 107-118, (1999). · Zbl 0937.83003 · doi:10.1007/s002200050607
[251] Muller, V., Schmidt, H.-J., and Starobinsky, A.A., “Power-law inflation as an attractor solution for inhomogeneous cosmological models.”, Class. Quantum Grav., 7, 1163-1168, (1990). · doi:10.1088/0264-9381/7/7/012
[252] Narita, M., “On the existence of global solutions for <Emphasis Type=”Italic“>T3-Gowdy spacetimes with stringy matter”, Class. Quantum Grav., 19, 6279-6288, (2002). · Zbl 1027.83029 · doi:10.1088/0264-9381/19/24/301
[253] Narita, M., “Global existence problem in <Emphasis Type=”Italic“>T3-Gowdy symmetric IIB superstring cosmology”, Class. Quantum Grav., 20, 4983-4994, (2003). · Zbl 1170.83463 · doi:10.1088/0264-9381/20/23/003
[254] Narita, M., “Global properties of higher-dimensional cosmological spacetimes”, Class. Quantum Grav., 21, 2071-2088, (2004). · Zbl 1055.83040 · doi:10.1088/0264-9381/21/8/011
[255] Narita, M., “On initial conditions and global existence for accelerating cosmologies from string theory”, (February, 2005). URL (cited on 18 March 2005): http://arXiv.org/abs/gr-qc/0502116. · Zbl 1082.83008
[256] Narita, M., Torii, T., and Maeda, K., “Asymptotic singular behavior of Gowdy spacetimes in string theory”, Class. Quantum Grav., 17, 4597-4613, (2000). · Zbl 0988.83020 · doi:10.1088/0264-9381/17/22/301
[257] Newman, R.P.A.C., “On the structure of conformal singularities in classical general relativity”, Proc. R. Soc. London, Ser. A, 443, 473-492, (1993). · Zbl 0810.53085 · doi:10.1098/rspa.1993.0158
[258] Newman, R.P.A.C., “On the structure of conformal singularities in classical general relativity. II Evolution equations and a conjecture of K. P. Tod”, Proc. R. Soc. London, Ser. A, 443, 493-515, (1993). · Zbl 0810.53086 · doi:10.1098/rspa.1993.0159
[259] Nilsson, U.S., Hancock, M.J., and Wainwright, J., “Non-tilted Bianchi VII0 models — the radiation fluid.”, Class. Quantum Grav., 17, 3119-3134, (2000). · Zbl 1073.83503 · doi:10.1088/0264-9381/17/16/303
[260] Noundjeu, P., and Noutchegueme, N., “Local existence and continuation criterion for solutions of the spherically symmetric Einstein-Vlasov-Maxwell system”, Gen. Relativ. Gravit., 36, 1373-1398, (2004). · Zbl 1053.83002 · doi:10.1023/B:GERG.0000022393.59558.fd
[261] Noundjeu, P., Noutchegueme, N., and Rendall, A.D., “Existence of initial data satisfying the constraints for the spherically symmetric Einstein-Vlasov-Maxwell system”, J. Math. Phys., 45, 668-676, (2004). · Zbl 1070.83005 · doi:10.1063/1.1637713
[262] Noutchegueme, N., Dongo, D., and Takou, E., “Global existence of solutions for the relativistic Boltzmann equation with arbitrarily large initial data on a Bianchi type I space-time”, (March, 2005). URL (cited on 13 April 2005): http://arXiv.org/abs/gr-qc/0503048. · Zbl 1093.83006 · doi:10.1007/s10714-005-0179-8
[263] Noutchegueme, N., and Tetsadjio, M.E., “Global solutions for the relativistic Boltzmann equation in the homogeneous case on the Minkowski space-time”, (July, 2003). URL (cited on 13 April 2005): http://arXiv.org/abs/gr-qc/0307065.
[264] Olabarrieta, I., and Choptuik, M.W., “Critical phenomena at the threshold of black hole formation for collisionless matter in spherical symmetry”, Phys. Rev. D, 65, 024007-1-10, (2002).
[265] Park, J., “Static solutions of the Einstein equations for spherically symmetric elastic bodies”, Gen. Relativ. Gravit., 32, 235-252, (2000). · Zbl 0968.83015 · doi:10.1023/A:1001875224949
[266] Pfaffelmoser, K., “Global classical solutions of the Vlasov-Poisson system in three dimensions for general initial data”, J. Differ. Equations, 95, 281-303, (1992). · Zbl 0810.35089 · doi:10.1016/0022-0396(92)90033-J
[267] Poisson, E., and Israel, W., “Internal structure of black holes”, Phys. Rev. D, 41, 1796-1809, (1990). · doi:10.1103/PhysRevD.41.1796
[268] Price, R., “Nonspherical perturbations of relativistic gravitational collapse. I. Scalar and gravitational perturbations.”, Phys. Rev. D, 5, 2419-2438, (1972). · doi:10.1103/PhysRevD.5.2419
[269] Racke, R., Lectures on Nonlinear Evolution Equations: Initial Value Problems, vol. 19 of Aspects of Mathematics, (Vieweg, Wiesbaden, Germany, 1992). · Zbl 0811.35002 · doi:10.1007/978-3-663-10629-6
[270] Rein, G., “Generic global solutions of the relativistic Vlasov-Maxwell system of plasma physics”, Commun. Math. Phys., 135, 41-78, (1990). · Zbl 0722.35091 · doi:10.1007/BF02097656
[271] Rein, G., “Static solutions of the spherically symmetric Vlasov-Einstein system”, Math. Proc. Camb. Phil. Soc., 115, 559-570, (1994). · Zbl 0806.35185 · doi:10.1017/S0305004100072303
[272] Rein, G., “Cosmological solutions of the Vlasov-Einstein system with spherical, plane and hyperbolic symmetry”, Math. Proc. Camb. Phil. Soc., 119, 739-762, (1996). · Zbl 0851.53058 · doi:10.1017/S0305004100074569
[273] Rein, G., “Nonlinear Stability of Homogeneous Models in Newtonian Cosmology”, Arch. Ration. Mech. Anal., 140, 335-351, (1997). · Zbl 0910.35134 · doi:10.1007/s002050050070
[274] Rein, G., “Static shells for the Vlasov-Poisson and Vlasov-Einstein systems”, Indiana Univ. Math. J., 48, 335-346, (1999). · Zbl 0932.35196 · doi:10.1512/iumj.1999.48.1636
[275] Rein, G., “Stationary and static stellar dynamical models with axial symmetry”, Nonlinear Anal., 41, 313-344, (2000). · Zbl 0952.35096 · doi:10.1016/S0362-546X(98)00280-6
[276] Rein, G., “Non-linear stability of gaseous stars,”, Arch. Ration. Mech. Anal., 168, 115-130, (2003). · Zbl 1044.76026 · doi:10.1007/s00205-003-0260-y
[277] Rein, G., “On future geodesic completeness for the Einstein-Vlasov system with hyperbolic symmetry”, Math. Proc. Camb. Phil. Soc., 137, 237-244, (2004). · Zbl 1052.83008 · doi:10.1017/S0305004103007485
[278] Rein, G., and Rendall, A.D., “Global existence of solutions of the spherically symmetric Vlasov-Einstein system with small initial data”, Commun. Math. Phys., 150, 561-583, (1992). · Zbl 0774.53056 · doi:10.1007/BF02096962
[279] Rein, G., and Rendall, A.D., “Smooth static solutions of the spherically symmetric Vlasov-Einstein system”, Ann. Inst. Henri Poincare A, 59, 383-397, (1993). · Zbl 0810.35138
[280] Rein, G., and Rendall, A.D., “Global Existence of Classical Solutions to the Vlasov-Poisson System in a Three Dimensional, Cosmological Setting”, Arch. Ration. Mech. Anal., 126, 183-201, (1994). · Zbl 0808.35109 · doi:10.1007/BF00391558
[281] Rein, G., and Rendall, A.D., “Compact support of spherically symmetric equilibria in relativistic and non-relativistic galactic dynamics”, Math. Proc. Camb. Phil. Soc., 128, 363-380, (2000). · Zbl 0960.35104 · doi:10.1017/S0305004199004193
[282] Rein, G., Rendall, A.D., and Schaeffer, J., “A regularity theorem for solutions of the spherically symmetric Vlasov-Einstein system”, Commun. Math. Phys., 168, 467-478, (1995). · Zbl 0830.35141 · doi:10.1007/BF02101839
[283] Rein, G., Rendall, A.D., and Schaeffer, J., “Critical collapse of collisionless matter: A numerical investigation”, Phys. Rev. D, 58, 044007-1-8, (1998). · doi:10.1103/PhysRevD.58.044007
[284] Rendall, A.D., “Reduction of the characteristic initial value problem to the Cauchy problem and its applications to the Einstein equations”, Proc. R. Soc. London, Ser. A, 427, 221-239, (1990). · Zbl 0701.35149 · doi:10.1098/rspa.1990.0009
[285] Rendall, A.D., “The initial value problem for a class of general relativistic fluid bodies”, J. Math. Phys., 33, 1047-1053, (1992). · Zbl 0754.76098 · doi:10.1063/1.529766
[286] Rendall, A.D., “On the definition of post-Newtonian approximations”, Proc. R. Soc. London, Ser. A, 438, 341-360, (1992). · Zbl 0754.53062 · doi:10.1098/rspa.1992.0111
[287] Rendall, A.D., “Cosmic censorship for some spatially homogeneous cosmological models”, Ann. Phys. (N.Y.), 233, 82-96, (1994). · Zbl 0806.53087 · doi:10.1006/aphy.1994.1061
[288] Rendall, A.D., “The Newtonian limit for asymptotically flat solutions of the Vlasov-Einstein system”, Commun. Math. Phys., 163, 89-112, (1994). · Zbl 0816.53058 · doi:10.1007/BF02101736
[289] Rendall, A.D., “Crushing singularities in spacetimes with spherical, plane and hyperbolic symmetry”, Class. Quantum Grav., 12, 1517-1533, (1995). · Zbl 0823.53072 · doi:10.1088/0264-9381/12/6/017
[290] Rendall, A.D., “Global properties of locally homogeneous cosmological models with matter.”, Math. Proc. Camb. Phil. Soc., 118, 511-526, (1995). · Zbl 0851.53078 · doi:10.1017/S0305004100073837
[291] Rendall, A.D., “On the nature of singularities in plane symmetric scalar field cosmologies.”, Gen. Relativ. Gravit., 27, 213-221, (1995). · Zbl 0817.53057 · doi:10.1007/BF02107959
[292] Rendall, A.D., “Constant mean curvature foliations in cosmological spacetimes”, Helv. Phys. Acta, 69, 490-500, (1996). · Zbl 0867.53026
[293] Rendall, A.D., “The initial singularity in solutions of the Einstein-Vlasov system of Bianchi type I”, J. Math. Phys., 37, 438-451, (1996). · Zbl 0862.35129 · doi:10.1063/1.531400
[294] Rendall, A.D., “Existence and non-existence results for global constant mean curvature foliations”, Nonlinear Anal., 30, 3589-3598, (1997). · Zbl 0891.53067 · doi:10.1016/S0362-546X(96)00203-9
[295] Rendall, A.D., “Existence of Constant Mean Curvature Foliations in Spacetimes with Two-Dimensional Local Symmetry”, Commun. Math. Phys., 189, 145-164, (1997). · Zbl 0897.53049 · doi:10.1007/s002200050194
[296] Rendall, A.D., “Global dynamics of the mixmaster model”, Class. Quantum Grav., 14, 2341-2356, (1997). · Zbl 0880.58036 · doi:10.1088/0264-9381/14/8/028
[297] Rendall, AD; Chruściel, PT (ed.), An introduction to the Einstein-Vlasov system, Proceedings of the Workshop on Mathematical Aspects of Theories of Gravitation, Warsaw, February 29-March 30, 1996, Warsaw, Poland · Zbl 0892.35148
[298] Rendall, AD; Francaviglia, M. (ed.); Longhi, G. (ed.); Lusanna, L. (ed.); Sorace, E. (ed.), Solutions of the Einstein equations with matter, Proceedings of the 14th International Conference on General Relativity and Gravitation, Florence, Italy, 6-12 August 1995, Singapore; River Edge, U.S.A. · Zbl 0956.83024
[299] Rendall, AD; Depauw, N. (ed.); Robert, D. (ed.); Saint-Raymond, X. (ed.), Blow-up for solutions of hyperbolic PDE and spacetime singularities (2000), Nantes, France · Zbl 1021.35004
[300] Rendall, A.D., “Fuchsian analysis of singularities in Gowdy spacetimes beyond analyticity”, Class. Quantum Grav., 17, 3305-3316, (2000). · Zbl 0967.83021 · doi:10.1088/0264-9381/17/16/313
[301] Rendall, A.D., “Collection of equations”, personal homepage, Max Planck Institute for Gravitational Physics, (2002). URL (cited on 30 March 2005): http://www.aei.mpg.de/∼rendall/3+1.ps.
[302] Rendall, A.D., “Cosmological Models and Centre Manifold Theory”, Gen. Relativ. Gravit., 34, 1277-1294, (2002). Related online version (cited on 21 January 2002): http://arXiv.org/abs/gr-qc/0112040. · Zbl 1016.83044 · doi:10.1023/A:1019734703162
[303] Rendall, A.D., “Accelerated cosmological expansion due to a scalar field whose potential has a positive lower bound”, Class. Quantum Grav., 21, 2445-2454, (2004). · Zbl 1054.83042 · doi:10.1088/0264-9381/21/9/018
[304] Rendall, A.D., “Asymptotics of solutions of the Einstein equations with positive cosmological constant.”, Ann. Henri Poincare, 5, 1041-1064, (2004). · Zbl 1061.83008 · doi:10.1007/s00023-004-0189-1
[305] Rendall, A.D., “Mathematical properties of cosmological models with accelerated expansion”, (August, 2004). URL (cited on 30 March 2005): http://arXiv.org/abs/gr-qc/0408053.
[306] Rendall, A.D., “Intermediate inflation and the slow-roll approximation”, Class. Quantum Grav., 22, 1655-1666, (2005). · Zbl 1068.83020 · doi:10.1088/0264-9381/22/9/013
[307] Rendall, A.D., and Schmidt, B.G., “Existence and properties of spherically symmetric static fluid bodies with given equation of state”, Class. Quantum Grav., 8, 985-1000, (1991). · Zbl 0724.53055 · doi:10.1088/0264-9381/8/5/022
[308] Rendall, A.D., and Tod, K.P., “Dynamics of spatially homogeneous solutions of the Einstein-Vlasov equations which are locally rotationally symmetric”, Class. Quantum Grav., 16, 1705-1726, (1999). · Zbl 1066.83509 · doi:10.1088/0264-9381/16/6/305
[309] Rendall, A.D., and Uggla, C., “Dynamics of spatially homogeneous locally rotationally symmetric solutions of the Einstein-Vlasov equations”, Class. Quantum Grav., 17, 4697-4713, (2000). · Zbl 0988.83034 · doi:10.1088/0264-9381/17/22/310
[310] Rendall, A.D., and Weaver, M., “Manufacture of Gowdy spacetimes with spikes”, Class. Quantum Grav., 18, 2959-2975, (2001). · Zbl 0995.83010 · doi:10.1088/0264-9381/18/15/310
[311] Ringstroöm, H., “The Bianchi IX attractor”, Ann. Henri Poincare, 2, 405-500, (2000). · Zbl 0985.83002 · doi:10.1007/PL00001041
[312] Ringströom, H., “Curvature blow up in Bianchi VIII and IX vacuum spacetimes”, Class. Quantum Grav., 17, 713-731, (2000). · Zbl 0964.83007 · doi:10.1088/0264-9381/17/4/301
[313] Ringström, H., “The future asymptotics of Bianchi VIII vacuum solutions”, Class. Quantum Grav., 18, 3791-3824, (2001). · Zbl 0993.83055 · doi:10.1088/0264-9381/18/18/302
[314] Ringströom, H., “Future asymptotic expansions of Bianchi VIII vacuum metrics”, Class. Quantum Grav., 20, 1943-1990, (2003). · Zbl 1040.83052 · doi:10.1088/0264-9381/20/11/302
[315] Ringström, H., “Asymptotic expansions close to the singularity in Gowdy spacetimes”, Class. Quantum Grav., 21, S305-S322, (2004). · Zbl 1040.83032 · doi:10.1088/0264-9381/21/3/019
[316] Ringström, H., “On a wave map equation arising in general relativity”, Commun. Pure Appl. Math., 57, 657-703, (2004). · Zbl 1059.83011 · doi:10.1002/cpa.20015
[317] Ringströom, H., “On Gowdy vacuum spacetimes”, Math. Proc. Camb. Phil. Soc., 136, 485-512, (2004). · Zbl 1050.83020 · doi:10.1017/S0305004103007321
[318] Schaeffer, J., “A class of counterexamples to Jeans’ theorem for the Vlasov-Einstein system”, Commun. Math. Phys., 204, 313-327, (1999). · Zbl 0956.83026 · doi:10.1007/s002200050647
[319] Secchi, P., “On the equations of viscous gaseous stars”, Ann. Scuola Norm. Sup. Pisa, 18, 295-318, (1991). · Zbl 0761.35117
[320] Shapiro, S.L., and Teukolsky, S.A., “Relativistic stellar dynamics on the computer. II. Physical applications”, Astrophys. J., 298, 58-79, (1985). · doi:10.1086/163588
[321] Shapiro, S.L., and Teukolsky, S.A., “Scalar gravitation — a laboratory for numerical relativity”, Phys. Rev. D, 47, 1529-1540, (1993). · doi:10.1103/PhysRevD.47.1529
[322] Sideris, T., “Formation of singularities in three-dimensional compressible fluids”, Commun. Math. Phys., 101, 475-485, (1979). · Zbl 0606.76088 · doi:10.1007/BF01210741
[323] Smoller, J.A., and Temple, B., “Global solutions of the relativistic Euler equations”, Commun. Math. Phys., 156, 65-100, (1993). · Zbl 0780.76085 · doi:10.1007/BF02096733
[324] Smoller, J.A., Wasserman, A.G., Yau, S.-T., and McLeod, J.B., “Smooth static solutions of the Einstein-Yang-Mills equations”, Commun. Math. Phys., 143, 115-147, (1991). · Zbl 0755.53061 · doi:10.1007/BF02100288
[325] Ståhl, F., “Fuchsian analysis of <Emphasis Type=”Italic“>S2 × <Emphasis Type=”Italic“>S1 and <Emphasis Type=”Italic“>S3 Gowdy models”, Class. Quantum Grav., 19, 4483-4504, (2002). Related online version (cited on 31 January 2002): http://arXiv.org/abs/gr-qc/0109011. · Zbl 1028.83014 · doi:10.1088/0264-9381/19/17/301
[326] Starobinsky, A.A., “Isotropization of arbitrary cosmological expansion given an effective cosmological constant”, J. Exp. Theor. Phys. Lett., 37, 66-69, (1983).
[327] Strauss, W., Nonlinear Wave Equations, vol. 73 of Regional Conference Series in Mathematics, (American Mathematical Society, Providence, U.S.A., 1989).
[328] Struwe, M., “Equivariant wave maps in two space dimensions.”, Commun. Pure Appl. Math., 56, 815-823, (2003). · Zbl 1033.53019 · doi:10.1002/cpa.10074
[329] Stuart, D.M.A., “Geodesics and the Einstein nonlinear wave system”, J. Math. Pures Appl., 83, 541-587, (2004). · Zbl 1072.58021 · doi:10.1016/j.matpur.2003.09.009
[330] Tanimoto, M.; Duggal, KL (ed.); Sharma, R. (ed.), Linear perturbations of spatially locally homogeneous spacetimes, No. vol. 337, 171-185 (2003), Providence, U.S.A. · Zbl 1042.83010 · doi:10.1090/conm/337/06060
[331] Tanimoto, M., “Harmonic analysis of linear fields on the nilgeometric cosmological model”, J. Math. Phys., 45, 4896-4919, (2004). · Zbl 1064.83011 · doi:10.1063/1.1811373
[332] Tanimoto, M., “Scalar fields on <Emphasis Type=”Italic“>SL(2, <Emphasis Type=”Italic“>R) and <Emphasis Type=”Italic“>H2 × <Emphasis Type=”Italic“>R geometric spacetimes and linear perturbations”, Class. Quantum Grav., 21, 5355-5374, (2004). · Zbl 1067.83514 · doi:10.1088/0264-9381/21/23/005
[333] Tao, T., “Geometric renormalization of large energy wave maps”, (November, 2004). URL (cited on 30 March 2005): http://arXiv.org/abs/math.AP/0411354. · Zbl 1087.58019
[334] Taylor, M.E., Pseudodifferential Operators and Nonlinear PDE, vol. 100 of Progress in Mathematics, (Birkhäuser, Boston, U.S.A., 1991). · Zbl 0746.35062 · doi:10.1007/978-1-4612-0431-2
[335] Taylor, M.E., Partial Differential Equations, 3 vols., Applied Mathematical Sciences, (Springer, Berlin, Germany; New York, U.S.A., 1996). · Zbl 0869.35001 · doi:10.1007/978-1-4684-9320-7
[336] Tchapnda, S.B., “Structure of solutions near the initial singularity for the surface-symmetric Einstein-Vlasov system”, Class. Quantum Grav., 21, 5333-5346, (2004). · Zbl 1082.83025 · doi:10.1088/0264-9381/21/23/003
[337] Tchapnda, S.B., and Noutchegueme, N., “The surface-symmetric Einstein-Vlasov system with cosmological constant.”, (April, 2003). URL (cited on 17 April 2005): http://arXiv.org/abs/gr-qc/0304098. · Zbl 1119.83013
[338] Tchapnda, S.B., and Rendall, A.D., “Global existence and asymptotic behaviour in the future for the Einstein-Vlasov system with positive cosmological constant”, Class. Quantum Grav., 20, 3037-3049, (2003). · Zbl 1056.83005 · doi:10.1088/0264-9381/20/14/306
[339] Tegankong, D., “Global existence and future asymptotic behaviour for solutions of the Einstein-Vlasov-scalar field system with surface symmetry”, (January, 2005). URL (cited on 17 March 2005): http://arXiv.org/abs/gr-qc/0501062. · Zbl 1077.83007
[340] Tegankong, D., Noutchegueme, N., and Rendall, A.D., “Local existence and continuation criteria for solutions of the Einstein-Vlasov-scalar field system with surface symmetry”, J. Hyperbol. Differ. Equations, 1, 691-724, (2004). · Zbl 1072.35190 · doi:10.1142/S0219891604000305
[341] Thurston, W., Three-dimensional geometry and topology, Vol. 1, vol. 35 of Princeton Mathematical Series, (Princeton University Press, Princeton, U.S.A., 1997). · Zbl 0873.57001 · doi:10.1515/9781400865321
[342] Tod, K.P., “Isotropic cosmological singularities: other matter models”, Class. Quantum Grav., 20, 521-534, (2003). · Zbl 1034.83032 · doi:10.1088/0264-9381/20/3/309
[343] van der Bij, J.J., and Radu, E., “On rotating regular nonabelian solitons”, Int. J. Mod. Phys. A, 17, 1477-1490, (2002). · Zbl 1006.81094 · doi:10.1142/S0217751X02009886
[344] Wainwright, J., and Ellis, G.F.R., Dynamical Systems in Cosmology, (Cambridge University Press, Cambridge, U.K.; New York, U.S.A., 1997). · Zbl 1072.83002 · doi:10.1017/CBO9780511524660
[345] Wainwright, J., Hancock, M.J., and Uggla, C., “Asymptotic self-similarity breaking at late times in cosmology”, Class. Quantum Grav., 16, 2577-2598, (1999). · Zbl 0946.83067 · doi:10.1088/0264-9381/16/8/302
[346] Wald, R.M., “Asymptotic behaviour of homogeneous cosmological models with cosmological constant”, Phys. Rev. D, 28, 2118-2120, (1983). · Zbl 0959.83064 · doi:10.1103/PhysRevD.28.2118
[347] Weaver, M., “Dynamics of magnetic Bianchi VI0 cosmologies.”, Class. Quantum Grav., 17, 421-434, (2000). · Zbl 0945.83039 · doi:10.1088/0264-9381/17/2/311
[348] Weaver, M., “On the area of the symmetry orbits in <Emphasis Type=”Italic“>T2 symmetric spacetimes with Vlasov matter”, Class. Quantum Grav., 21, 1079-1098, (2004). · Zbl 1054.83007 · doi:10.1088/0264-9381/21/4/023
[349] Witt, D., “Vacuum spacetimes that admit no maximal slice”, Phys. Rev. Lett., 57, 1386-1389, (1986). · doi:10.1103/PhysRevLett.57.1386
[350] Wolansky, G., “Static Solutions of the Vlasov-Einstein System”, Arch. Ration. Mech. Anal., 156, 205-230, (2001). · Zbl 0974.83002 · doi:10.1007/s002050000122
[351] Woodhouse, NMJ; Chruściel, PT (ed.), Integrability and Einstein’s equations, Proceedings of the Workshop on Mathematical Aspects of Theories of Gravitation, Warsaw, Poland, February 29-March 30, 1996, Warsaw, Poland · Zbl 0891.35158
[352] Wu, S., “Well-posedness in Sobolev spaces of the full water wave problem in 3-D”, J. Amer. Math. Soc., 12, 445-495, (1999). · Zbl 0921.76017 · doi:10.1090/S0894-0347-99-00290-8
[353] York Jr, J.W., “Conformal “Thin-Sandwich” Data for the Initial-Value Problem of General Relativity“, <Emphasis Type=”Italic“>Phys. Rev. Lett., <Emphasis Type=”Bold”>82, 1350-1353, (1999). · Zbl 0949.83011 · doi:10.1103/PhysRevLett.82.1350
[354] Zipser, N., The global nonlinear stability of the trivial solution of the Einstein-Maxwell equations, Ph.D. Thesis, (Harvard University, Cambrige, U.S.A., 2000).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.