×

Self-gravitating relativistic fluids: A two-phase model. (English) Zbl 0841.76097

The paper presents a rigorous, detailed and thorough discussion of the general relativistic hydrodynamics of perfect fluid, in the case of spherically symmetric collapse. The assumed model of fluid – soft phase with zero sound velocity and hard phase with sound velocity equal to the velocity of light – is highly idealized, but it may serve as a guide to future investigations using more realistic models. The Cauchy problems for external soft phase as well as for inner hard phase are analyzed taking into account the phase transition between phases.

MSC:

76Y05 Quantum hydrodynamics and relativistic hydrodynamics
83C55 Macroscopic interaction of the gravitational field with matter (hydrodynamics, etc.)
Full Text: DOI

References:

[1] H. A. Bethe, G. E. Brown, J. Applegate & J. M. Lattimer: Equation of state in the gravitational collapse of stars, Nuclear Physics A324, 487-533 (1979). · doi:10.1016/0375-9474(79)90596-7
[2] H. A. Bethe, G. E. Brown, J. Cooperstein & J. R. Wilson: A simplified equation of state near nuclear density, Nuclear Physics A403, 625-648 (1983). · doi:10.1016/0375-9474(83)90626-7
[3] D. Christodoulou: Violation of cosmic censorship in the gravitational collapse of a dust cloud, Comm. Math. Phys. 93, 171-195 (1984). · doi:10.1007/BF01223743
[4] D. Christodoulou: A mathematical theory of gravitational collapse, Comm. Math. Phys. 109, 613-647 (1987). · Zbl 0613.53049 · doi:10.1007/BF01208960
[5] D. Christodoulou: The formation of black holes and singularities in spherically symmetric gravitational collapse, Comm. Pure Appl. Math. 44, 339-373 (1991). · Zbl 0728.53061 · doi:10.1002/cpa.3160440305
[6] D. Christodoulou: Bounded variation solutions of the spherically symmetric Einstein-scalar field equations, Comm. Pure Appl. Math. 44, 1131-1220 (1993). · Zbl 0853.35122 · doi:10.1002/cpa.3160460803
[7] B. Friedman & V. R. Pandharipande: Hot and cold, nuclear and neutron matter, Nuclear Physics A361, 502-520 (1981). · doi:10.1016/0375-9474(81)90649-7
[8] R. D. Gulliver, R. Osserman & H. L. Royden: A theory of branched immersions of surfaces, Amer. J. Math. 95, 750-812 (1973). · Zbl 0295.53002 · doi:10.2307/2373697
[9] J. R. Oppenheimer & H. Snyder: On continued gravitational contraction, Phys. Rev. 56, 455-459 (1939). · Zbl 0022.28104 · doi:10.1103/PhysRev.56.455
[10] R. Osserman: A proof of the regularity everywhere of the classical solution to Plateau’s problem, Ann. of Math. 91, 550-569 (1970). · Zbl 0194.22302 · doi:10.2307/1970637
[11] J. D. Walecka: A theory of highly condensed matter, Ann. Phys. 83, 491-529 (1974). · doi:10.1016/0003-4916(74)90208-5
[12] Ya. B. Zel’dovich: The equation of state at ultrahigh densities and its relativistic limitations, J. Exp. Theor. Phys.(U.S.S.R.) 41, 1609-1615 (1961). (English trans. in Sov. Phys.- JETP 14, 1143-1147 (1962)).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.