Abstract
It is shown that, given any set of initial data for Einstein's equations which satisfy the constraint conditions, there exists a development of that data which is maximal in the sense that it is an extension of every other development. These maximal developments form a well-defined class of solutions of Einstein's equations. Any solution of Einstein's equations which has a Cauchy surface may be embedded in exactly one such maximal development.
Similar content being viewed by others
References
Choquet-Bruhat, Y.: Acta Math., 1952. See also a review article in: Gravitation: an introduction to current research, L. Witten (Ed.). New York: J. Wiley 1962.
Lichnerowicz, A.: Theories relativistes de la gravition et de l'electromagnétisme. Paris: Masson 1955.
Wheeler, J. A.: Article in: Relativity, groups and topology. New York: Gordon-Breach 1964.
Choquet-Bruhat, Y.: Article in: Batelle seattle recontres. New York: Benjamin 1968.
Leray, J.: Hyperbolic differential equations. Preprint, Princeton, 1952.
Penrose, R.: Phys. Rev. Letters14, 57 (1965).
Hawking, S. W.: Proc. Roy. Soc.294 A, 511 (1966).
Geroch, R.: The domain of dependence. J. Math. Phys. (to be published).
Choquet-Bruhat, Y.: Bull. Soc. Math.96, 181–192 (1968).
See, for example: Kelly, J. L.: General topology. New York: Van Nostrand 1955.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Choquet-Bruhat, Y., Geroch, R. Global aspects of the Cauchy problem in general relativity. Commun.Math. Phys. 14, 329–335 (1969). https://doi.org/10.1007/BF01645389
Issue Date:
DOI: https://doi.org/10.1007/BF01645389