×

Development of a computational approach for a space-time fractional moving boundary problem arising from drug release systems. (English) Zbl 1476.65170

Summary: This paper presents an iterative procedure based on an implicit finite difference method to solve a mathematical model of drug delivery from a planar matrix with a moving boundary condition. This model includes the diffusion equation with space-time fractional-order derivatives. We establish the stability and convergence analysis of the method. We compare the numerical results with the scale-invariant and the homotopy perturbation solutions for different space-time-fractional orders and the problem parameters.

MSC:

65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
92-08 Computational methods for problems pertaining to biology
Full Text: DOI

References:

[1] Bollati, J.; Semitiel, J.; Tarzia, DA, Heat balance integral methods applied to the one-phase Stefan problem with a convective boundary condition at the fixed face, Appl Math Comput, 331, 1-19 (2018) · Zbl 1388.37046 · doi:10.1016/j.cam.2017.09.008
[2] Brambila F (ed) (2017) Fractal analysis: applications in physics, engineering and technology. doi:10.5772/65531
[3] Caputo, M.; Cametti, C., Diffusion through skin in the light of a fractional derivative approach: progress and challenges, J Pharmacokinet Pharmacodyn, 4, 1-7 (2020)
[4] Cruz-Duarte, JM; Rosales-Garcia, J.; Correa-Cely, CR; Garcia-Perez, A.; Avina-Cervantes, JG, A closed form expression for the Gaussian-based Caputo-Fabrizio fractional derivative for signal processing applications, Commun Nonlin Sci Numer Sim, 61, 138-148 (2018) · Zbl 1470.94036 · doi:10.1016/j.cnsns.2018.01.020
[5] Das, S.; Kumar, R.; Gupta, PK, Analytical approximate solution of space-time fractional diffusion equation with a moving boundary condition, Z Naturforschung A, 66, 5, 281-288 (2011) · doi:10.1515/zna-2011-0503
[6] Font, F., A one-phase Stefan problem with size-dependent thermal conductivity, Appl Math Model, 63, 172-178 (2018) · Zbl 1480.80010 · doi:10.1016/j.apm.2018.06.052
[7] Fu, H.; Liu, H.; Wang, H., A finite volume method for two-dimensional Riemann-Liouville space-fractional diffusion equation and its efficient implementation, J Comput Phys, 88, 316-334 (2019) · Zbl 1452.65189 · doi:10.1016/j.jcp.2019.03.030
[8] Gao, X.; Jiang, X.; Chen, S., The numerical method for the moving boundary problem with space-fractional derivative in drug release devices, Appl Math Model, 39, 8, 2385-2391 (2015) · Zbl 1443.92099 · doi:10.1016/j.apm.2014.10.053
[9] Garshasbi, M.; Malek Bagomghaleh, S., An iterative approach to solve a nonlinear moving boundary problem describing the solvent diffusion within glassy polymers, Math Meth Appl Sci, 43, 6, 3754-3772 (2020) · Zbl 1446.65066 · doi:10.1002/mma.6153
[10] Garshasbi, M.; Sanaei, F., A variable time-step method for a space fractional diffusion moving boundary problem: an application to planar drug release devices, Int J Numer Model Electron Netw Dev Field (2020) · doi:10.1002/jnm.2852
[11] Kilbas, AA; Srivastava, HM; Trujillo, JJ, Theory and applications of fractional differential equations (2006), Amsterdam: Elsevier Science, Amsterdam · Zbl 1092.45003
[12] Kumar, A., A moving boundary problem with space-fractional diffusion logistic population model and density-dependent dispersal rate, Appl Math Model, 88, 951-65 (2020) · Zbl 1481.92104 · doi:10.1016/j.apm.2020.06.070
[13] Kushwaha, MS, Homotopy perturbation method for a limit case Stefan problem governed by fractional diffusion equation, Appl Math Model, 37, 5, 3589-3599 (2013) · Zbl 1352.65414 · doi:10.1016/j.apm.2012.07.047
[14] Lei, Y.; Wang, H.; Chen, X.; Yang, X.; You, Z.; Dong, S.; Gao, J., Shear property, high-temperature rheological performance and low-temperature flexibility of asphalt mastics modified with bio-oil, Constr Build Mater, 174, 30-7 (2018) · doi:10.1016/j.conbuildmat.2018.04.094
[15] Li C, Cai M (2019) Theory and numerical approximations of fractional integrals and derivatives. Society for Industrial and Applied Mathematic
[16] Li, C.; Yi, Q.; Chen, A., Finite difference methods with non-uniform meshes for nonlinear fractional differential equations, J Comput Phys, 316, 614-631 (2016) · Zbl 1349.65246 · doi:10.1016/j.jcp.2016.04.039
[17] Li, X.; Xu, M.; Wang, S., Analytical solutions to the moving boundary problems with space-time-fractional derivatives in drug release devices, J Phys A Math Theor, 40, 40, 12131 (2007) · Zbl 1134.35104 · doi:10.1088/1751-8113/40/40/008
[18] Li, X.; Xu, M.; Wang, S., Scale-invariant solutions to partial differential equations of fractional order with a moving boundary condition, J Phys A Math Theor, 41, 15, 155-202 (2008) · Zbl 1153.35088 · doi:10.1088/1751-8113/41/15/155202
[19] Liu, N.; Liu, Y.; Li, H.; Wang, J., Time second-order finite difference/finite element algorithm for nonlinear time-fractional diffusion problem with fourth-order derivative term, Comput Math Appl, 75, 10, 3521-3536 (2017) · Zbl 1419.65068 · doi:10.1016/j.camwa.2018.02.014
[20] Liu, Z.; Cheng, A.; Li, X.; Wang, H., A fast solution technique for finite element discretization of the space-time fractional diffusion equation, Appl Numer Math, 119, 146-163 (2017) · Zbl 1368.65194 · doi:10.1016/j.apnum.2017.04.003
[21] Machado, JAT; Herisanu, N.; Marinca, V., Fractional calculus: fundamentals and applications, Acoustics and vibration of mechanical structures-AVMS-2017 springer proceedings in physics (2018), Cham: Springer, Cham · doi:10.1007/978-3-319-69823-6_1
[22] Matouk AE (ed) (2020) Advanced Applications of Fractional Differential Operators to Science and Technology. IGI Global
[23] Milici, C.; Drăgănescu, G.; Machado, JT, Introduction to fractional differential equations (2019), Berlin: Springer, Berlin · Zbl 1417.34004 · doi:10.1007/978-3-030-00895-6
[24] Mitchell, SL; Myers, TG, Application of standard and refined heat balance integral methods to one-dimensional Stefan problems, SIAM Rev, 52, 1, 57-86 (2010) · Zbl 1188.80004 · doi:10.1137/080733036
[25] Mitchell, SL; Vynnycky, M., On the accurate numerical solution of a two-phase Stefan problem with phase formation and depletion, J Comput Appl Math, 300, 259-274 (2016) · Zbl 1382.80006 · doi:10.1016/j.cam.2015.12.021
[26] Pachauri, N.; Yadav, J.; Rani, A.; Singh, V., Modified fractional order IMC design based drug scheduling for cancer treatment, Comput Biol Med, 109, 121-37 (2019) · doi:10.1016/j.compbiomed.2019.04.013
[27] Paul, DR; Mc Spadden, SK, Diffusional release of a solute from a polymer matrix, J Membr Sci, 1, 33-48 (1978) · doi:10.1016/S0376-7388(00)82256-5
[28] Peppas, NA; Narasimhan, B., Mathematical models in drug delivery: how modeling has shaped the way we design new drug delivery systems, J Control Release, 190, 75-81 (2014) · doi:10.1016/j.jconrel.2014.06.041
[29] Popovic, JK; Posa, M.; Popovic, KJ; Popovic, DJ; Milosevic, N.; Tepavcevic, V., Individualization of a pharmacokinetic model by fractional and nonlinear fit improvement, Eur J Drug Metab Pharmacokinet, 38, 69-76 (2013) · doi:10.1007/s13318-012-0097-6
[30] Sadoun, N.; Si-Ahmed, EK; Colinet, P., On the refined integral method for the one-phase Stefan problem with time-dependent boundary conditions, Appl Math Model, 30, 6, 531-544 (2006) · Zbl 1183.80093 · doi:10.1016/j.apm.2005.06.003
[31] Sun, H.; Zhang, Y.; Baleanu, D.; Chen, W.; Chen, Y., A new collection of real world applications of fractional calculus in science and engineering, Commun Nonlinear Sci Numer Simul, 64, 213-31 (2018) · Zbl 1509.26005 · doi:10.1016/j.cnsns.2018.04.019
[32] Siepmann, J.; Siepmann, F., Modeling of diffusion controlled drug delivery, J Control Release, 161, 2, 351-362 (2012) · doi:10.1016/j.jconrel.2011.10.006
[33] Singh BK, Kumar P (2017) Fractional variational iteration method for solving fractional partial differential equations with proportional delay. Int J Diff Equ 2017:5206380. doi:10.1155/2017/5206380 · Zbl 1487.35421
[34] Singh, J.; Gupta, PK; Rai, KN, Homotopy perturbation method to space-time fractional solidification in a finite slab, Appl Math Model, 35, 4, 1937-1945 (2011) · Zbl 1217.80153 · doi:10.1016/j.apm.2010.11.005
[35] Sopasakis, P.; Sarimveis, H.; Macheras, P.; Dokoumetzidis, A., Fractional calculus in pharmacokinetics, J Pharmacokinet Pharmacodyn, 45, 1, 107-25 (2018) · doi:10.1007/s10928-017-9547-8
[36] Wu, G.; Baleanu, D., Variational iteration method for the Burgers’ flow with fractional derivatives-new Lagrange multipliers, Appl Math Model, 37, 9, 6183-6190 (2013) · Zbl 1438.76046 · doi:10.1016/j.apm.2012.12.018
[37] Yan, R.; Han, M.; Ma, Q.; Ding, X., A spectral collocation method for nonlinear fractional initial value problems with a variable-order fractional derivative, Comput Appl Math, 38, 2, 66 (2019) · Zbl 1438.65164 · doi:10.1007/s40314-019-0835-3
[38] Yin, C.; Li, X., Anomalous diffusion of drug release from a slab matrix: fractional diffusion models, Int J Pharm, 418, 1, 78-87 (2011) · doi:10.1016/j.ijpharm.2010.12.009
[39] Yin, C.; Xu, M., An asymptotic analytical solution to the problem of two moving boundaries with fractional diffusion in one-dimensional drug release devices, J Phys A Math Theor, 42, 11, 115210 (2009) · Zbl 1180.82242 · doi:10.1088/1751-8113/42/11/115210
[40] Zaky, MA, An accurate spectral collocation method for nonlinear systems of fractional differential equations and related integral equations with nonsmooth solutions, Appl Numer Math, 154, 205-222 (2020) · Zbl 1442.65464 · doi:10.1016/j.apnum.2020.04.002
[41] Zeng, F.; Mao, Z.; Karniadakis, GE, A generalized spectral collocation method with tunable accuracy for fractional differential equations with end-point singularities, SIAM J Sci Comput, 39, 1, 360-383 (2017) · Zbl 1431.65193 · doi:10.1137/16M1076083
[42] Zhang, H.; Liu, F.; Zhuang, P.; Turner, I.; Anh, V., Numerical analysis of a new space-time variable fractional order advection-dispersion equation, Appl Math Comput, 242, 541-550 (2014) · Zbl 1334.65143
[43] Zou, GA, Galerkin finite element method for time-fractional stochastic diffusion equations, Comput Appl Math, 37, 4, 4877-98 (2018) · Zbl 1432.65153 · doi:10.1007/s40314-018-0609-3
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.