×

Galerkin finite element method for time-fractional stochastic diffusion equations. (English) Zbl 1432.65153

Summary: In this paper, Galerkin finite element method for solving the time-fractional stochastic diffusion equations with multiplicative noise is proposed and investigated. The pathwise regularity properties of solutions to the semidiscrete Galerkin approximations are demonstrated and the convergence of optimal rates are derived. And also we construct the fully discrete scheme which is based on the approximations of the Mittag-Leffler function and analyze the error estimates of convergence in \(L_{2}\)-norm space. Finally, numerical results are conducted to confirm our theoretical findings.

MSC:

65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
35R11 Fractional partial differential equations
35R60 PDEs with randomness, stochastic partial differential equations
60H15 Stochastic partial differential equations (aspects of stochastic analysis)
65M75 Probabilistic methods, particle methods, etc. for initial value and initial-boundary value problems involving PDEs
65C30 Numerical solutions to stochastic differential and integral equations
Full Text: DOI

References:

[1] Agbanusi, IC; Isaacson, SA, A comparison of bimolecular reaction models for stochastic reaction-diffusion systems, Bull Math Biol, 76, 922-946, (2014) · Zbl 1297.92029 · doi:10.1007/s11538-013-9833-6
[2] Bates, PW; Lu, K; Wang, B, Random attractors for stochastic reaction-diffusion equations on unbounded domains, J Differ Equ, 246, 845-869, (2009) · Zbl 1155.35112 · doi:10.1016/j.jde.2008.05.017
[3] Bhrawy, AH; Zaky, MA, An improved collocation method for multi-dimensional space-time variable-order fractional Schrödinger equations, Appl Numer Math, 111, 197-218, (2017) · Zbl 1353.65106 · doi:10.1016/j.apnum.2016.09.009
[4] Bhrawy, AH; Zaky, MA, Highly accurate numerical schemes for multi-dimensional space variable-order fractional Schrödinger equations, Comput Math Appl, 73, 1100-1117, (2017) · Zbl 1412.65162 · doi:10.1016/j.camwa.2016.11.019
[5] Bhrawy, AH; Zaky, MA; Machado, JAT, Efficient Legendre spectral tau algorithm for solving two-sided space-time Caputo fractional advection-dispersion equation, J Vib Control, 22, 2053-2068, (2015) · Zbl 1365.35201 · doi:10.1177/1077546314566835
[6] Bhrawy, AH; Alzaidy, JF; Abdelkawy, MA; Biswas, A, Jacobi spectral collocation approximation for multidimensional time-fractional Schrödinger equations, Nonlinear Dyn, 84, 1553-1567, (2016) · doi:10.1007/s11071-015-2588-x
[7] Cao, D; Sun, C; Yang, M, Dynamics for a stochastic reaction-diffusion equation with additive noise, J Differ Equ, 259, 838-872, (2015) · Zbl 1323.35226 · doi:10.1016/j.jde.2015.02.020
[8] Cerrai, S, Stochastic reaction-diffusion systems with multiplicative noise and non-Lipschitz reaction term, Probab Theory Relat Fields, 125, 271-304, (2003) · Zbl 1027.60064 · doi:10.1007/s00440-002-0230-6
[9] Chen, ZQ; Kim, KH; Kim, P, Fractional time stochastic partial differential equations, Stoch Process Appl, 125, 1470-1499, (2015) · Zbl 1322.60106 · doi:10.1016/j.spa.2014.11.005
[10] Chevalier, MW; El-Samad, H, Towards a minimal stochastic model for a large class of diffusion-reactions on biological membranes, J Chem Phys, 137, 084103, (2012) · doi:10.1063/1.4746692
[11] Deng, K; Deng, W, Finite difference/predictor-corrector approximations for the space and time fractional Fokker-Planck equation, Appl Math Lett, 25, 1815-1821, (2012) · Zbl 1252.82073 · doi:10.1016/j.aml.2012.02.025
[12] Engblom, S; Ferm, L; Hellander, A; Lötstedt, P, Simulation of stochastic reaction-diffusion processes on unstructured meshes, SIAM J Sci Comput, 31, 1774-1797, (2009) · Zbl 1190.65015 · doi:10.1137/080721388
[13] Erban, R; Flegg, M; Papoian, G, Multiscale stochastic reaction-diffusion modelling: application to actin dynamics in filopodia, Bull Math Biol, 76, 799-818, (2014) · Zbl 1297.92033 · doi:10.1007/s11538-013-9844-3
[14] Feng, X; Li, Y; Zhang, Y, Finite element methods for the stochastic Allen-Cahn equation with gradient-type multiplicative noise, SIAM J Numer Anal, 55, 194-216, (2017) · Zbl 1357.65010 · doi:10.1137/15M1022124
[15] Ferm, L; Hellander, A; Lotstedt, P, An adaptive algorithm for simulation of stochastic reaction-diffusion processes, J Comput Phys, 229, 343-360, (2010) · Zbl 1185.65014 · doi:10.1016/j.jcp.2009.09.030
[16] Gyöngy, I, Lattice approximations for stochastic quasi-linear parabolic partial differential equations driven by space-time white noise II, Potential Anal, 11, 1-37, (1999) · Zbl 0944.60074 · doi:10.1023/A:1008699504438
[17] Haubold HJ, Mathai AM, Saxena RK (2011) Mittag-Leffler functions and their applications. J Appl Math (Article ID 298628) · Zbl 1218.33021
[18] Hellander, S; Löstedt, P, Flexible single molecule simulation of reaction-diffusion processes, J Comput Phys, 230, 3948-3965, (2011) · Zbl 1225.82041 · doi:10.1016/j.jcp.2011.02.020
[19] Hilfer R (2000) Applications of cractional calculus in physics. World Scientific, River Edge · Zbl 0998.26002 · doi:10.1142/3779
[20] Huang, J; Shen, T, Well-posedness and dynamics of the stochastic fractional magneto-hydrodynamic equations, Nonlinear Anal, 133, 102-133, (2016) · Zbl 1333.35196 · doi:10.1016/j.na.2015.12.001
[21] Jiang, Y; Ma, J, High-order finite element methods for time-fractional partial differential equations, J Comput Appl Math, 235, 3285-3290, (2011) · Zbl 1216.65130 · doi:10.1016/j.cam.2011.01.011
[22] Kerr, RA; Bartol, TM; Kaminsky, B; Dittrich, M; Chang, J; Baden, SB; Sejnowski, TJ; Stiles, JR, Fast Monte Carlo simulation methods for biological reaction-diffusion systems in solution and on surfaces, SIAM J Sci Comput, 30, 3126-3149, (2008) · Zbl 1178.65004 · doi:10.1137/070692017
[23] Kilbas AA, Srivastava HM, Trujillo JJ (2006) Theory and applications of fractional differential equations. Elsevier, New York · Zbl 1092.45003
[24] Kim, C; Nonaka, A; Bell, JB; Garcia, AL; Donev, A, Stochastic simulation of reaction-diffusion systems: a fluctuating-hydrodynamics approach, J Chem Phys, 146, 124110, (2017) · doi:10.1063/1.4978775
[25] Kloeden, PE; Lord, GJ; Neuenkirch, A; Shardlow, T, The exponential integrator scheme for stochastic partial differential equations: pathwise error bounds, J Comput Appl Math, 235, 1245-1260, (2011) · Zbl 1208.65017 · doi:10.1016/j.cam.2010.08.011
[26] Kruse R (2014) Strong and weak approximation of semilinear stochastic evolution equations. Springer, New York · Zbl 1285.60002 · doi:10.1007/978-3-319-02231-4
[27] Kunze, M; Neerven, J, Continuous dependence on the coefficients and global existence for stochastic reaction diffusion equations, J Differ Equ, 253, 1036-1068, (2012) · Zbl 1270.60071 · doi:10.1016/j.jde.2012.04.013
[28] Li, Y; Guo, B, Random attractors for quasi-continuous random dynamical systems and applications to stochastic reaction-diffusion equations, J Differ Equ, 245, 1775-1800, (2008) · Zbl 1188.37076 · doi:10.1016/j.jde.2008.06.031
[29] Liu, L; Fu, X, Dynamics of a stochastic fractional reaction-difusion equation, Taiwan J Math, 22, 95-124, (2018) · Zbl 1398.35274 · doi:10.11650/tjm/8161
[30] Machado, JT; Kiryakova, V; Mainardi, F, Recent history of fractional calculus, Commun Nonlinear Sci Numer Simul, 16, 1140-1153, (2011) · Zbl 1221.26002 · doi:10.1016/j.cnsns.2010.05.027
[31] Mainardi F (2010) Fractional calculus and waves in linear viscoelasticity: an introduction to mathematical models. World Scientific, Singapore · Zbl 1210.26004 · doi:10.1142/p614
[32] McLean, W; Thomée, V, Time discretization of an evolution equation via Laplace transforms, IMA J Numer Anal, 24, 439-463, (2004) · Zbl 1068.65146 · doi:10.1093/imanum/24.3.439
[33] Mijena, JB; Nane, E, Space-time fractional stochastic partial differential equations, Stoch Proc Appl, 125, 3301-3326, (2015) · Zbl 1329.60216 · doi:10.1016/j.spa.2015.04.008
[34] Misiats, O; Stanzhytskyi, O; Yip, NK, Existence and uniqueness of invariant measures for stochastic reaction-diffusion equations in unbounded domains, J Theor Probab, 29, 996-1026, (2016) · Zbl 1360.60126 · doi:10.1007/s10959-015-0606-z
[35] Oksendal B (2013) Stochastic differential equations: an introduction with applications. Springer, New York · Zbl 1334.00056
[36] Podlubny I (1999) Fractional differential equations. Academic Press, New York · Zbl 0924.34008
[37] Povstenko Y (2015) Linear fractional diffusion-wave equation for scientists and engineers. Springer, New York · Zbl 1331.35004 · doi:10.1007/978-3-319-17954-4
[38] Prévôt C, Röckner M (2007) A concise course on stochastic partial differential equations. Springer, New York · Zbl 1123.60001
[39] Ramaswamy, R; Sbalzarini, IF, Exact on-lattice stochastic reaction-diffusion simulations using partial-propensity methods, J Chem Phys, 135, 244103, (2011) · doi:10.1063/1.3666988
[40] Seybold, H; Hilfer, R, Numerical algorithm for calculating the generalized Mittag-Leffler function, SIAM J Numer Anal, 47, 69-88, (2008) · Zbl 1190.65033 · doi:10.1137/070700280
[41] Thomée V (1984) Galerkin finite element methods for parabolic problems. Springer, New York · Zbl 0528.65052
[42] Wang, X; Gan, S, A Runge-Kutta type scheme for nonlinear stochastic partial differential equations with multiplicative trace class noise, Numer Algorithm, 62, 193-223, (2013) · Zbl 1267.65007 · doi:10.1007/s11075-012-9568-8
[43] Wang, Z; Zhou, S, Random attractor for stochastic reaction-diffusion equation with multiplicative noise on unbounded domains, J Math Anal Appl, 384, 160-172, (2011) · Zbl 1227.60087 · doi:10.1016/j.jmaa.2011.02.082
[44] Zaky MA (2017) A Legendre spectral quadrature tau method for the multi-term time-fractional diffusion equations. Comput Appl Math. https://doi.org/10.1007/s40314-017-0530-1 · Zbl 1404.65204
[45] Zaky MA (2017) An improved tau method for the multi-dimensional fractional Rayleigh-Stokes problem for a heated generalized second grade fluid. Comput Math Appl. https://doi.org/10.1016/j.camwa.2017.12.004 · Zbl 1409.65080
[46] Zeng, F; Li, C; Liu, F; Turner, I, The use of finite difference/element approaches for solving the time-fractional subdiffusion equation, SIAM J Sci Comput, 35, a2976-a3000, (2013) · Zbl 1292.65096 · doi:10.1137/130910865
[47] Zhai, S; Feng, X; He, Y, An unconditionally stable compact ADI method for three-dimensional time-fractional convection-diffusion equation, J Comput Phys, 269, 138-155, (2014) · Zbl 1349.65356 · doi:10.1016/j.jcp.2014.03.020
[48] Zhou Y (2014) Basic theory of fractional differential equations. World Scientific, Singapore · Zbl 1336.34001 · doi:10.1142/9069
[49] Zou, G; Wang, B, Stochastic burgers’ equation with fractional derivative driven by multiplicative noise, Comput Math Appl, 74, 3195-3208, (2017) · Zbl 1395.35200 · doi:10.1016/j.camwa.2017.08.023
[50] Zou, G; Wang, B; Zhou, Y, Existence and regularity of mild solutions to fractional stochastic evolution equations, Math Model Nat Phenom, 13, 1-19, (2018) · Zbl 1405.60102 · doi:10.1051/mmnp/2018004
[51] Zou, G; Lv, G; Wu, J, Stochastic Navier-Stokes equations with Caputo derivative driven by fractional noises, J Math Anal Appl, 461, 595-609, (2018) · Zbl 1390.60252 · doi:10.1016/j.jmaa.2018.01.027
[52] Zou G, Atangana A, Zhou Y (2018) Error estimates of a semidiscrete finite element method for fractional stochastic diffusion-wave equations. Numer Methods Partial Differ Equ. https://doi.org/10.1002/num.22252 · Zbl 1407.74098
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.