×

Forts of quadratic polynomials under iteration. (English) Zbl 1388.37046

This paper is concerned with qualitative behaviors of iterates of functions. More specifically, given a function \(f:E\longrightarrow E\) where \(E\) is a nonempty set, the \(n\)-th iterate \(f^{n}\) is defined by \(f^{0}(x)=x,\) \(f^{n+1}(x)=f\left(f^{n}(x)\right)\) for all \(x\in E\). Let \(E\) be a real interval \(I\), and let \(f\) be a continuous map \(f:I\longrightarrow I\). A point \(a\in I\) is called a monotone point of \(f\) if \(f\) is strictly monotone in a neighborhood of \(a;\) otherwise it is called a fort of \(f\). Let \(S(f)\) be the set of all forts of \(f\) and let \(N(f)\) the cardinality of \(S(f)\).
There are many interesting questions that we can ask about the sequence \(\left\{ N(f^{n})\right\}_{n=0}^{\infty}\). It is obviously non-negative, but is it monotone, bounded, or tending to a limit?
In the case when \(f\) is a polynomial, based on the so-called “polynomial complete discrimination system”, this paper offers an algorithm to compute \(\left\{ N(f^{n})\right\}_{n=0}^{\infty}\). Then this algorithm is applied to the special quadratic function \(f(x)=g_{\mu}(x)=x^{2}+\mu\). It is shown that if \(\mu \geq 0\), then \(N\left(g_{\mu}^{n}\right) =N\left(g_{\mu}\right) =1\) for \(n\geq 2;\) and if \(\mu <0,\) then \(\lim_{n}N\left(g_{\mu}^{n}\right) =\infty\). Futhermore, for fixed \(n=2,3,\dots,7,\) it is shown that each \(N\left(g_{\mu}^{n}\right) ,\) as a function of \(\mu\), is constant over specific intervals of the form shown below:
\[ \begin{matrix} & N\left(g_{\mu}\right) & N\left(g_{\mu}^{2}\right) & N\left(g_{\mu}^{3}\right) & N\left(g_{\mu}^{4}\right) & N\left(g_{\mu}^{5}\right) & N\left(g_{\mu}^{6}\right) & N\left(g_{\mu}^{7}\right) \\ [ \mu_{2,0},+\infty ) & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ [ \mu_{3,1},\mu_{2,0}) & 1 & 3 & 5 & 7 & 9 & 11 & 13 \\ [ \mu_{5,1},\mu_{3,1}) & 1 & 3 & 7 & 13 & 21 & 31 & 43 \\ [ \mu_{7,1},\mu_{5,1}) & 1 & 3 & 7 & 13 & 23 & 37 & 57 \\ [ \mu_{6,1},\mu_{7,1}) & 1 & 3 & 7 & 13 & 23 & 37 & 59 \\ [ \mu_{4,1},\mu_{6,1}) & 1 & 3 & 7 & 13 & 23 & 39 & 65 \\ [ \mu_{7,2},\mu_{4,1}) & 1 & 3 & 7 & 15 & 29 & 53 & 93 \\ [ \mu_{6,2},\mu_{7,2}) & 1 & 3 & 7 & 15 & 29 & 53 & 95 \\ [ \mu_{7,3},\mu_{6,2}) & 1 & 3 & 7 & 15 & 29 & 55 & 101 \\ [ \mu_{5,2},\mu_{7,3}) & 1 & 3 & 7 & 15 & 29 & 55 & 103 \\ [ \mu_{7,4},\mu_{5,2}) & 1 & 3 & 7 & 15 & 31 & 61 & 117 \\ [ \mu_{6,3},\mu_{7,4}) & 1 & 3 & 7 & 15 & 31 & 61 & 119 \\ [ \mu_{7,5},\mu_{6,3}) & 1 & 3 & 7 & 15 & 31 & 63 & 125 \\ (-\infty ,\mu_{7,5}) & 1 & 3 & 7 & 15 & 31 & 63 & 127 \\ \end{matrix} \]
This table suggests several meaningful conjectures, one of which is that the numbers of changes of constancies of \(N(g_{\mu}^{n})\) match the Fibonacci numbers. Further investigations including symbolic computations of \(N(g_{\mu}^{n})\) are also of interest.

MSC:

37E05 Dynamical systems involving maps of the interval
39B12 Iteration theory, iterative and composite equations
68W30 Symbolic computation and algebraic computation
26A18 Iteration of real functions in one variable
Full Text: DOI

References:

[1] Zhang, J.; Yang, L., Discussion on iterative roots of piecewise monotone functions, Acta Math. Sinica, 26, 398-412 (1983), (in Chinese) · Zbl 0529.39006
[2] Zhang, W., PM functions, their characteristic intervals and iterative roots, Ann. Polon. Math., 65, 119-128 (1997) · Zbl 0873.39009
[3] Liu, L.; Jarczyk, W.; Li, L.; Zhang, W., Iterative roots of piecewise monotonic functions of nonmonotonicity height not less than 2, Nonlinear Anal., 75, 286-303 (2012) · Zbl 1298.39020
[4] Liu, L.; Zhang, W., Non-monotonic iterative roots extended from characteristic intervals, J. Math. Anal. Appl., 378, 359-373 (2011) · Zbl 1216.39028
[5] Akritas, A. G.; Vigklas, P. S., Counting the number of real roots in an interval with Vincents theorem, Bull. Math. Soc. Sci. Math. Roumanie Tome, 53, 3, 201-211 (2010) · Zbl 1199.12002
[6] Gelfand, I. M.; Kapranov, M. M.; Zelevinsky, A. V., Discriminants, Resultants and Multidimensional Determinants (1994), Birkhäuser: Birkhäuser Boston · Zbl 0827.14036
[7] Yang, L., Recent advances on determining the numbers of real roots of parametic polynomials, J. Symbolic Comput., 28, 225-242 (1999) · Zbl 0957.65041
[8] Yang, L.; Hou, X.; Zeng, Z., A complete discrimination system for polynomials, Sci. China, E39, 6, 628-646 (1996) · Zbl 0866.68104
[9] Yang, L. L.; Yang, L.; Yu, Z.; Zhang, W., Real polynomial iterative roots in the case of nonmonotonicity height \(\geq 2\), Sci. China Math., 55, 12, 2433-2446 (2012) · Zbl 1259.68246
[10] Alligood, K. T.; Sauer, T. D.; Yorke, J. A., Chaos: An Introduction to Dynamical Systems (1996), Springer: Springer New York · Zbl 0867.58043
[11] Kuczma, M., Functional Equations in a Single Variable (1968), Polish Scientific Publishers: Polish Scientific Publishers Warszawa · Zbl 0196.16403
[12] Ball, K. M., Strange Curves, Counting Rabbits, and Other Mathematical Explorations (2003), Princeton University Press: Princeton University Press Princeton · Zbl 1094.00002
[13] Bóna, M., A Walk Through Combinatorics: An Introduction to Enumeration and Graph Theory (2011), World Scientific: World Scientific New Jersey · Zbl 1236.05001
[14] May, R. M., Simple mathematical models with very complicated dynamics, Nature, 261, 5560, 459-467 (1976) · Zbl 1369.37088
[15] Linage, G.; Montoya, F.; Sarmiento, A.; Showalter, K.; Parmananda, P., Fibonacci order in the period-doubling cascade to chaos, Phys. Lett. A, 359, 638-639 (2006) · Zbl 1236.37024
[16] Feigenbaum, M. J., The universal metric properties of non-linear transformations, J. Stat. Phys., 21, 669-706 (1979) · Zbl 0515.58028
[17] Ott, E., Chaos in Dynamical Systems (1993), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0792.58014
[18] Schuster, H. G., Deterministic Chaos: An Introduction (1984), Physik-Verlag: Physik-Verlag Heidelburg · Zbl 0707.58004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.