×

A one-phase Stefan problem with size-dependent thermal conductivity. (English) Zbl 1480.80010

Summary: In this paper a one-phase Stefan problem with size-dependent thermal conductivity is analysed. Approximate solutions to the problem are found via perturbation and numerical methods, and compared to the Neumann solution for the equivalent Stefan problem with constant conductivity. We find that the size-dependant thermal conductivity, relevant in the context of solidification at the nanoscale, slows down the solidification process. A small time asymptotic analysis reveals that the position of the solidification front in this regime behaves linearly with time, in contrast to the Neumann solution characterized by a square root of time proportionality. This has an important physical consequence, namely the speed of the front predicted by size-dependant conductivity model is finite while the Neumann solution predicts an infinite and, thus, unrealistic speed as \(t \rightarrow 0\).

MSC:

80A22 Stefan problems, phase changes, etc.

References:

[1] Lame, G.; Clapeyron, B., Mémoire sur la solidification par refroidissement d’un globe solide, Ann. Chim. Phys., 47, 250-256 (1831)
[2] Rubinstein, L., The Stefan problem, Translations of Mathematical Monographs, 27 (1971), American Mathematical Society · Zbl 0219.35043
[3] Crank, J., Free and Moving Boundary Problems (1996), Oxford University Press
[4] Hill, J. M., One-Dimensional Stefan Problems: An Introduction (1987), Longman Scientific & Technical · Zbl 0658.35002
[6] Carslaw, H.; Jaeger, J., Conduction of Heat in Solids (1973), Oxford University Press · Zbl 0972.80500
[8] McCue, S. W.; Wu, B.; Hill, J. M., Classical two-phase Stefan problem for spheres, Proc. Royal Soc. Lond. A. Math. Phys. Sci., 464, 2096, 2055-2076 (2008) · Zbl 1145.80303
[12] Wu, B.; McCue, S. W.; Tillman, P.; Hill, J. M., Single phase limit for melting nanoparticles, Appl. Math. Model., 33, 5, 2349-2367 (2009) · Zbl 1185.82079
[14] Font, F.; Myers, T. G.; Mitchell, S. L., A mathematical model for nanoparticle melting with density change, Microfluid. Nanofluidics, 18, 2, 233-243 (2015)
[16] Dragomirescu, F. I.; Eisenschmidt, K.; Rohde, C.; Weigand, B., Perturbation solutions for the finite radially symmetric Stefan problem, Int. J. Therm. Sci., 104, 386-395 (2016)
[17] Sunderland, J. E.; Cho, S. H., Phase change problems with temperature-dependent thermal conductivity, J. Heat Trans., 96, 2, 214-217 (1974)
[19] Li, D.; Wu, Y.; Kim, P.; Shi, L.; Yang, P.; Majumdar, A., Thermal conductivity of individual silicon nanowires, Appl. Phys. Lett., 83, 14, 2934-2936 (2003)
[20] Liu, W.; Asheghi, M., Phonon-boundary scattering in ultrathin single-crystal silicon layers, Appl. Phys. Lett., 84, 19, 3819-3821 (2004)
[21] Jou, D.; Casas-Vazquez, J.; Lebon, G.; Grmela, M., A phenomenological scaling approach for heat transport in nano-systems, Appl. Math. Lett., 18, 8, 963-967 (2005) · Zbl 1081.80001
[22] Jou, D.; Lebon, G.; Casas-Vázquez, J., Extended Irreversible Thermodynamics (2010), Springer: Springer Netherlands · Zbl 1185.74002
[23] Alvarez, F. X.; Jou, D., Memory and nonlocal effects in heat transport: from diffusive to ballistic regimes, Appl. Phys. Lett., 90, 8, 083109 (2007)
[24] Caldwell, J.; Kwan, Y. Y., Numerical methods for one-dimensional Stefan problems, Commun. Numer. Methods Eng., 20, 7, 535-545 (2004) · Zbl 1048.65095
[25] Mitchell, S.; Vynnycky, M., Finite-difference methods with increased accuracy and correct initialization for one-dimensional Stefan problems, Appl. Math. Comput., 215, 4, 1609-1621 (2009) · Zbl 1177.80078
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.