×

The Harer-Zagier recursion for an irregular spectral curve. (English) Zbl 1354.14079

This paper provides an alternative method to the topological recursion for computing the one-point function \(W_1(x)\) in the case of Laguerre and generalized Laguerre ensembles, i.e. an Hermitian matrix model with potential \(V(x)=x\) on \(\mathbb{R}_+\). The main result of the paper is to provide an explicit three terms recursion, which is similar to the one of J. Harer and D. Zagier [Invent. Math. 85, 457–485 (1986; Zbl 0616.14017)] or N. Do and P. Norbury [Topological recursion for irregular spectral curves, arXiv:1412.8334] in the Gaussian case, for computing the coefficients of the one-point function. The main advantage of this method compared to the topological recursion, is that it does not require the knowledge of the other correlation functions and therefore computations are much easier and faster. Thus, as explained in the paper, it is particularly well-suited for the matching of the coefficients with integers arising in enumerative geometry. In the Laguerre case, the author presents the details of the connection with the number of unicellular two-colored maps. The proof of the three terms recursion relies first on a replica trick, then the use of the Harish-Chandra-Itzykson-Zuber integral, and finally some contour deformations and standard complex analysis techniques. Consequently, the paper is relatively short and pleasant to read. However, since the proof relies on the knowledge of some specific formulas, the method may not easily generalize to more complicated models.

MSC:

14N10 Enumerative problems (combinatorial problems) in algebraic geometry
15B52 Random matrices (algebraic aspects)
05A15 Exact enumeration problems, generating functions
60B20 Random matrices (probabilistic aspects)

Citations:

Zbl 0616.14017

References:

[1] Mehta, M. L., (Random Matrices. Random Matrices, Pure and Applied Mathematics (Amsterdam), vol. 142 (2004), Elsevier/Academic Press: Elsevier/Academic Press Amsterdam) · Zbl 1107.15019
[2] Eynard, B., All genus correlation functions for the hermitian 1-matrix model, J. High Energy Phys., 0411:031 (2004)
[3] Chekhov, L.; Eynard, B., Hermitean matrix model free energy: Feynman graph technique for all genera, J. High Energy Phys., 0603, 014 (2006), e-Print Archive: hep-th/0504116 · Zbl 1226.81137
[4] Chekhov, L.; Eynard, B.; Orantin, N., Free energy topological expansion for the 2-matrix model, J. High Energy Phys., 12, 053 (2006) · Zbl 1226.81250
[5] Bertrand, Eynard; Nicolas, Orantin, Invariants of algebraic curves and topological expansion, Commun. Number Theory Phys., 1, 347-452 (2007) · Zbl 1161.14026
[6] Alexandrov, A.; Mironov, A.; Morozov, A., Partition functions of matrix models as the first special functions of String Theory I. Finite size Hermitean 1-matrix model, Internat. J. Modern Phys. A, 19, 4127-4165 (2004) · Zbl 1087.81051
[7] Harer, J.; Zagier, D., The Euler characteristic of the moduli space of curves, Invent. Math., 85, 457-485 (1986) · Zbl 0616.14017
[8] Andersen, J. E.; Chekhov, L. O.; Norbury, P.; Penner, R. C., Models of discretized moduli spaces, cohomological field theories, and Gaussian means, J. Geom. Phys., 98, 312-339 (2015) · Zbl 1329.81298
[9] Haagerup, U.; Thorbjørnsen, S., Asymptotic expansions for the Gaussian unitary ensembles, Infinite Dimens. Anal. Quantum Probab. Relat. Top., 15, 1, 1250003 (2012), (41pp.) · Zbl 1262.60009
[10] Ambjørn, J.; Jurkiewicz, J.; Makeenko, Yu., Multiloop correlators for two- dimensional quantum gravity, Phys. Lett., 251B, 517-524 (1990)
[11] Bernardi, O.; Chapuy, G., A bijection for covered maps, or a shortcut between Harer-Zagier’s and Jackson’s formulas, J. Combin. Theory Ser. A, 118, 6, 1718-1748 (2011) · Zbl 1227.05128
[12] Chapuy, G.; Féray, V.; Fusy, É., A simple model of trees for unicellular maps, J. Combin. Theory Ser. A, 120, 8, 2064-2092 (2013), arXiv:1202.3252v5 · Zbl 1278.05081
[13] Jackson, D. M., Some combinatorial problems associated with products of conjugacy classes of the symmetric group, J. Combin. Theory Ser. A, 49, 2, 363-369 (1988) · Zbl 0682.20002
[15] Brezin, É.; Hikami, S., Intersection theory from duality and replica, Comm. Math. Phys., 283, 507-521 (2008) · Zbl 1152.14300
[17] Zograf, P. G., Enumeration of Grothendieck’s dessins and KP hierarchy, Int. Math. Res. Notices (2015), arXiv:1312:2538v2 · Zbl 1397.11116
[18] Ambjørn, J.; Chekhov, L., The matrix model for dessins d’enfants, Ann. Inst. Henri Poincaré D, 1, 3, 337-361 (2014) · Zbl 1304.81130
[20] Akemann, G.; Ipsen, J. R.; Kielburg, M., Products of rectangular random matrices: Singular values and progressive scattering, Phys. Rev. E, 88, Article 052118 pp. (2013)
[21] Marchenko, V. A.; Pastur, L. A., Distribution of eigenvalues for some sets of random matrices, Math. USSR-Sb., 1, 457-483 (1967) · Zbl 0162.22501
[22] Harnad, J.; Orlov, A. Yu., Hypergeometric \(\tau \)-functions, Hurwitz numbers and enumeration of paths, Commun. Math. Phys., 338, 1, 267-284 (2015), arXiv:1407.7800 · Zbl 1347.33035
[23] Kazarian, M., KP hierarchy for Hodge integrals, Adv. Math., 221, 1-21 (2009) · Zbl 1168.14006
[24] Alexandrov, A.; Mironov, A.; Morozov, A.; Natanzon, S., On KP-integrable Hurwitz functions, J. High-Energy Phys., 11, 080 (2014), (30pp.). arXiv:1405.1395 · Zbl 1333.81192
[25] Kazarian, M.; Zograf, P., Virasoro constraints and topological recursion for Grothendieck’s dessin counting, Lett. Math. Phys., 105, 8, 1057-1084 (2015) · Zbl 1332.37051
[27] Andersen, J. E.; Chekhov, L. O.; Norbury, P.; Penner, R. C., Topological recursion for Gaussian means and cohomological field theories, Theoret. Math. Phys., 185, 3, 1685-1717 (2015) · Zbl 1335.81105
[28] Bertrand, Eynard; Nicolas, Orantin, Topological recursion in enumerative geometry and random matrices, J. Phys. A, 42, Article 293001 pp. (2009), (117pp.) · Zbl 1177.82049
[29] Ledoux, M., A recursion formula for the moments of the Gaussian orthogonal ensemble, Ann. Inst. Henri Poincaré Probab. Stat., 45, 3, 754-769 (2009) · Zbl 1184.60003
[30] Witte, N. S.; Forrester, P. J., Moments of the Gaussian \(\beta\) ensembles and the large-\(N\) expansion of the densities, J. Math. Phys., 55, Article 083302 pp. (2014) · Zbl 1301.82023
[32] Givental, A., Gromov-Witten invariants and quantization of quadratic Hamiltonians, Mosc. Math. J., 1, 4, 551-568 (2001) · Zbl 1008.53072
[33] Chekhov, L., Matrix models tools and geometry of moduli spaces, Acta Appl. Math., 48, 33-90 (1997), e-Print Archive: hep-th/9509001 · Zbl 0898.14008
[34] Alexandrov, A., Open intersection numbers, matrix models and MKP hierarchy, J. High-Energy Phys., 03, 042 (2015), (13pp.) · Zbl 1388.81463
[35] Alexandrov, A., Open intersection numbers, Kontsevich-Penner model and cut-and-join operators, J. High-energy Phys., 08, 028 (2015), (24pp.). arXiv:1412.3772 · Zbl 1388.81165
[37] Buryak, A., Equivalence of the open KdV and the open Virasoro equations for the moduli space of Riemann surfaces with boundary, Lett. Math. Phys., 105, 10, 1427-1448 (2015), arXiv:1409.3888 · Zbl 1323.35158
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.