×

Moments of the Gaussian {\(\beta\)} ensembles and the large-\(N\) expansion of the densities. (English) Zbl 1301.82023

Summary: The loop equation formalism is used to compute the \(1/N\) expansion of the resolvent for the Gaussian {\(\beta\)} ensemble up to and including the term at \(O(N^{-6})\). This allows the moments of the eigenvalue density to be computed up to and including the 12th power and the smoothed density to be expanded up to and including the term at \(O(N^{-6})\). The latter contain non-integrable singularities at the endpoints of the support – we show how to nonetheless make sense of the average of a sufficiently smooth linear statistic. At the special couplings {\(\beta\)} = 1, 2, and 4 there are characterisations of both the resolvent and the moments which allows for the corresponding expansions to be extended, in some recursive form at least, to arbitrary order. In this regard, we give fifth order linear differential equations for the density and resolvent at {\(\beta\)} = 1 and 4, which complements the known third order linear differential equations for these quantities at {\(\beta\)} = 2.{
©2014 American Institute of Physics}

MSC:

82B31 Stochastic methods applied to problems in equilibrium statistical mechanics
60B20 Random matrices (probabilistic aspects)
15B52 Random matrices (algebraic aspects)

Software:

DLMF

References:

[1] The On-Line Encyclopedia of Integer Sequences, 2010.
[2] Adler, M.; Forrester, P. J.; Nagao, T.; van Moerbeke, P., Classical skew orthogonal polynomials and random matrices, J. Stat. Phys., 99, 1-2, 141-170 (2000) · Zbl 0989.82020 · doi:10.1023/A:1018644606835
[3] Ambjørn, J.; Makeenko, Y. M., Properties of loop equations for the Hermitian matrix model and for two-dimensional quantum gravity, Mod. Phys. Lett. A, 5, 22, 1753-1763 (1990) · Zbl 1020.81806 · doi:10.1142/S0217732390001992
[4] Bergère, M.; Eynard, B.; Marchal, O.; Prats-Ferrer, A., Loop equations and topological recursion for the arbitrary-β two-matrix model, J. High Energy Phys., 098, 77 (2012) · Zbl 1309.81199 · doi:10.1007/JHEP03(2012)098
[5] Borot, G.; Eynard, B.; Majumdar, S. N.; Nadal, C., Large deviations of the maximal eigenvalue of random matrices, J. Stat. Mech. Theory Exp., P11024, 56 (2011) · Zbl 1456.60015 · doi:10.1088/1742-5468/2011/11/P11024
[6] Borot, G.; Eynard, B.; Mulase, M.; Safnuk, B., A matrix model for simple Hurwitz numbers, and topological recursion, J. Geom. Phys., 61, 2, 522-540 (2011) · Zbl 1225.14043 · doi:10.1016/j.geomphys.2010.10.017
[7] Borot, G.; Guionnet, A., Asymptotic expansion of β matrix models in the one-cut regime, Commun. Math. Phys., 317, 2, 447-483 (2013) · Zbl 1344.60012 · doi:10.1007/s00220-012-1619-4
[8] Brézin, E.; Hikami, S., Computing topological invariants with one and two-matrix models, J. High Energy Phys., 110, 30 (2009) · doi:10.1088/1126-6708/2009/04/110
[9] Brézin, E.; Itzykson, C.; Parisi, G.; Zuber, J. B., Planar diagrams, Commun. Math. Phys., 59, 1, 35-51 (1978) · Zbl 0997.81548 · doi:10.1007/BF01614153
[10] Brini, A.; Mariño, M.; Stevan, S., The uses of the refined matrix model recursion, J. Math. Phys., 52, 5, 052305 (2011) · Zbl 1317.81216 · doi:10.1063/1.3587063
[11] Desrosiers, P.; Forrester, P. J., Hermite and Laguerre β-ensembles: Asymptotic corrections to the eigenvalue density, Nucl. Phys. B, 743, 3, 307-332 (2006) · Zbl 1214.82051 · doi:10.1016/j.nuclphysb.2006.03.002
[12] Di Francesco, P., Matrix model combinatorics: Applications to folding and coloring, Random Matrix Models and Their Applications, 40, 111-170 (2001) · Zbl 1129.81334
[13] Dumitriu, I.; Edelman, A., Global spectrum fluctuations for the β-Hermite and β-Laguerre ensembles via matrix models, J. Math. Phys., 47, 6, 063302 (2006) · Zbl 1112.82021 · doi:10.1063/1.2200144
[14] Dumitriu, I.; Edelman, A.; Shuman, G., MOPS: Multivariate orthogonal polynomials (symbolically), J. Symb. Comput., 42, 6, 587-620 (2007) · Zbl 1122.33019 · doi:10.1016/j.jsc.2007.01.005
[15] Ercolani, N. M.; McLaughlin, K. D. T.-R., Asymptotics of the partition function for random matrices via Riemann-Hilbert techniques and applications to graphical enumeration, Int. Math. Res. Not., 2003, 755-820 (2003) · Zbl 1140.82307 · doi:10.1155/S1073792803211089
[16] Forrester, P. J., Log Gases and Random Matrices, 34 (2010) · Zbl 1217.82003
[17] Forrester, P. J.; Frankel, N. E.; Garoni, T. M., Asymptotic form of the density profile for Gaussian and Laguerre random matrix ensembles with orthogonal and symplectic symmetry, J. Math. Phys., 47, 2, 023301 (2006) · Zbl 1111.82019 · doi:10.1063/1.2165254
[18] Garoni, T. M.; Forrester, P. J.; Frankel, N. E., Asymptotic corrections to the eigenvalue density of the GUE and LUE, J. Math. Phys., 46, 10, 103301 (2005) · Zbl 1111.82020 · doi:10.1063/1.2035028
[19] Götze, F.; Tikhomirov, A., The rate of convergence for spectra of GUE and LUE matrix ensembles, Cent. Eur. J. Math., 3, 4, 666-704 (2005) · Zbl 1108.60014 · doi:10.2478/BF02475626
[20] Goulden, I. P.; Jackson, D. M., Maps in locally orientable surfaces and integrals over real symmetric surfaces, Can. J. Math., 49, 5, 865-882 (1997) · Zbl 0903.05016 · doi:10.4153/CJM-1997-045-9
[21] Haagerup, U.; Thorbjørnsen, S., Random matrices with complex Gaussian entries, Expo. Math., 21, 4, 293-337 (2003) · Zbl 1041.15018 · doi:10.1016/S0723-0869(03)80036-1
[22] Haagerup, U.; Thorbjørnsen, S., Asymptotic expansions for the Gaussian unitary ensemble, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 15, 1, 1250003 (2012) · Zbl 1262.60009 · doi:10.1142/S0219025712500038
[23] Hadamard, J., Lectures on Cauchy’s Problem in Linear Partial Differential Equations (1953) · JFM 49.0725.04
[24] Harer, J.; Zagier, D., The Euler characteristic of the moduli space of curves, Invent. Math., 85, 3, 457-485 (1986) · Zbl 0616.14017 · doi:10.1007/BF01390325
[25] Johansson, K., On fluctuations of eigenvalues of random Hermitian matrices, Duke Math. J., 91, 1, 151-204 (1998) · Zbl 1039.82504 · doi:10.1215/S0012-7094-98-09108-6
[26] Lando, S. K. and Zvonkin, A. K., “Graphs on surfaces and their applications,” Encyclopaedia of Mathematical Sciences Vol. 141 (Springer-Verlag, Berlin, 2004) (With an Appendix by Don B. Zagier, Low-Dimensional Topology, II). · Zbl 1040.05001
[27] Ledoux, M., Differential operators and spectral distributions of invariant ensembles from the classical orthogonal polynomials. The continuous case, Electron. J. Probab., 9, 7, 177-208 (2004) · Zbl 1073.60037 · doi:10.1214/EJP.v9-191
[28] Ledoux, M., A recursion formula for the moments of the Gaussian orthogonal ensemble, Ann. Inst. Henri Poincaré Probab. Stat., 45, 3, 754-769 (2009) · Zbl 1184.60003 · doi:10.1214/08-AIHP184
[29] Mehta, M. L., Random Matrices, 142 (2004) · Zbl 1107.15019
[30] Mezzadri, F.; Simm, N. J., Moments of the transmission eigenvalues, proper delay times, and random matrix theory. I, J. Math. Phys., 52, 10, 103511 (2011) · Zbl 1272.81082 · doi:10.1063/1.3644378
[31] Mironov, A. D.; Morozov, A. Y.; Popolitov, A. V.; Shakirov, Sh. R., Resolvents and Seiberg-Witten representation for a Gaussian β-ensemble, Theor. Math. Phys., 171, 1, 505-522 (2012) · Zbl 1274.81103 · doi:10.1007/s11232-012-0049-y
[32] Morozov, A.; Shakirov, Sh., Exact 2-point function in hermitian matrix model, J. High Energy Phys., 003, 33 (2009) · Zbl 1179.81137 · doi:10.1088/1126-6708/2009/12/003
[33] Morozov, A. Y., Challenges of β-deformation, Theor. Math. Phys., 173, 1, 1417-1437 (2012) · Zbl 1280.81111 · doi:10.1007/s11232-012-0123-5
[34] Mulase, M.; Waldron, A., Duality of orthogonal and symplectic matrix integrals and quaternionic Feynman graphs, Commun. Math. Phys., 240, 3, 553-586 (2003) · Zbl 1033.81062 · doi:10.1007/s00220-003-0918-1
[35] Olver, F. W. J.; Lozier, D. W.; Boisvert, R. F.; Clark, C. W., NIST Handbook of Mathematical Functions (2010) · Zbl 1198.00002
[36] Pastur, L.; Shcherbina, M., Eigenvalue Distribution of Large Random Matrices, 171 (2011) · Zbl 1244.15002
[37] Pastur, L. A., The spectrum of random matrices, Teoret. Mat. Fiz., 10, 1, 102-112 (1972) · doi:10.1007/BF01035768
[38] Riesz, M., Integrales de Riemann-Liouville et potentiels, Acta Sci. Math. Szeged, 9, 1-1, 1-42 (1938) · JFM 64.0476.03
[39] Zvonkin, A., Matrix integrals and map enumeration: An accessible introduction, Math. Comput. Modelling, 26, 8-10, 281-304 (1997) · Zbl 1185.81083 · doi:10.1016/S0895-7177(97)00210-0
[40] In contrast to our choice of the eigenvalue PDF in §II given by (2.1) and the potential V(λ)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.