×

Asymptotic expansions for the Gaussian unitary ensemble. (English) Zbl 1262.60009

Let \(g:\mathbb R\to \mathbb C\) be a \(C^{\infty}\)-function with all derivatives bounded, and let \(\operatorname{Tr}\) denote the trace on \(n\times n\) matrices. The authors prove for a random matrix \(X_n\) from the Gaussian unitary ensemble (GUE) an asymptotic expansion \[ \frac 1n \operatorname{E} \left[\operatorname{Tr} g\left(\frac{X_n}{\sqrt n}\right)\right]= \frac 1 {2\pi} \int_{-2}^2 g(x) \sqrt{4-x^2}dx + \sum_{j=1}^k \frac{\alpha_j(g)}{n^{2j}}+ O(n^{-2k-2}), \] where \(k\) is an arbitrary positive integer. The coefficients \(\alpha_j(g)\) of the expansion are characterized in terms of Chebyshev polynomials. This gives a proof of a result by N. M. Ercolani and K. D. T.-R. McLaughlin [Int. Math. Res. Not. 2003, No. 14, 755–820 (2003; Zbl 1140.82307)]. A similar asymptotic expansion for the covariance \[ \operatorname{Cov}\left( \operatorname{Tr} f\left(\frac{X_n}{\sqrt n} \right), \operatorname{Tr} g\left(\frac{X_n}{\sqrt n} \right)\right) \] is obtained. Special attention is paid to the case where \(g(x)=\frac{1}{\lambda-x}\) and \(f(x)=\frac 1 {\mu-x}\). In this case, the mean and the covariance considered by the authors are related to the one- and the two-dimensional Cauchy transform of the mean distribution of eigenvalues of \(X_n\).

MSC:

60B20 Random matrices (probabilistic aspects)

Citations:

Zbl 1140.82307

References:

[1] DOI: 10.1007/s002200100531 · Zbl 1038.82039 · doi:10.1007/s002200100531
[2] Duvillard T. C., Ann. I. H. Poincaré – PR37 3 pp 373–
[3] Ercolani N. M., Int. Math. Research Not. 14 pp 755–
[4] DOI: 10.2478/BF02475626 · Zbl 1108.60014 · doi:10.2478/BF02475626
[5] DOI: 10.1137/S0040585X97982268 · Zbl 1118.15022 · doi:10.1137/S0040585X97982268
[6] DOI: 10.1016/j.aim.2005.05.008 · Zbl 1109.15020 · doi:10.1016/j.aim.2005.05.008
[7] DOI: 10.1016/S0723-0869(03)80036-1 · Zbl 1041.15018 · doi:10.1016/S0723-0869(03)80036-1
[8] DOI: 10.4007/annals.2005.162.711 · Zbl 1103.46032 · doi:10.4007/annals.2005.162.711
[9] Erdélyi A., Higher Transcendental Functions 3 (1955) · Zbl 0064.06302
[10] DOI: 10.1007/BF01390325 · Zbl 0616.14017 · doi:10.1007/BF01390325
[11] DOI: 10.1063/1.531589 · Zbl 0866.15014 · doi:10.1063/1.531589
[12] Mingo J. A., Int. Math. Res. Not. 28 pp 1413–
[13] DOI: 10.1007/BF02180200 · Zbl 0916.15009 · doi:10.1007/BF02180200
[14] Rudin W., Functional analysis (1991) · Zbl 0867.46001
[15] DOI: 10.1017/CBO9780511810886 · doi:10.1017/CBO9780511810886
[16] DOI: 10.1006/jfan.2000.3622 · Zbl 0977.46041 · doi:10.1006/jfan.2000.3622
[17] Voiculescu D., Inventiones Math. 104 pp 202–
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.