×

Open intersection numbers, Kontsevich-Penner model and cut-and-join operators. (English) Zbl 1388.81165

Summary: We continue our investigation of the Kontsevich-Penner model, which describes intersection theory on moduli spaces both for open and closed curves. In particular, we show how Buryak’s residue formula, which connects two generating functions of intersection numbers, appears in the general context of matrix models and tau-functions. This allows us to prove that the Kontsevich-Penner matrix integral indeed describes open intersection numbers. For arbitrary \(N\) we show that the string and dilaton equations completely specifythe solution of the KP hierarchy. We derive a complete family of the Virasoro and W-constraints, and using these constraints, we construct the cut-and-join operators. The case \(N=1\), corresponding to open intersection numbers, is particularly interesting: for this case we obtain two different families of the Virasoro constraints, so that the difference between them describes the dependence of the tau-function on even times.

MSC:

81R05 Finite-dimensional groups and algebras motivated by physics and their representations

References:

[1] A. Alexandrov, Open intersection numbers, matrix models and MKP hierarchy, JHEP03 (2015) 042 [arXiv:1410.1820] [INSPIRE]. · Zbl 1388.81463 · doi:10.1007/JHEP03(2015)042
[2] E. Brézin and S. Hikami, On an Airy matrix model with a logarithmic potential, J. Phys.A 45 (2012) 045203 [arXiv:1108.1958] [INSPIRE]. · Zbl 1267.81265
[3] A. Mironov, A. Morozov and G.W. Semenoff, Unitary matrix integrals in the framework of generalized Kontsevich model. 1. Brezin-Gross-Witten model, Int. J. Mod. Phys.A 11 (1996) 5031 [hep-th/9404005] [INSPIRE]. · Zbl 1044.81723 · doi:10.1142/S0217751X96002339
[4] L. Chekhov and Yu. Makeenko, The Multicritical Kontsevich-Penner model, Mod. Phys. Lett.A 7 (1992) 1223 [hep-th/9201033] [INSPIRE]. · Zbl 1021.81704 · doi:10.1142/S0217732392003700
[5] R.C. Penner, Perturbative series and the moduli space of Riemann surfaces, J. Diff. Geom.27 (1988) 35 [INSPIRE]. · Zbl 0608.30046
[6] S. Kharchev, A. Marshakov, A. Mironov and A. Morozov, Generalized Kontsevich model versus Toda hierarchy and discrete matrix models, Nucl. Phys.B 397 (1993) 339 [hep-th/9203043] [INSPIRE]. · doi:10.1016/0550-3213(93)90347-R
[7] M. Kontsevich, Intersection theory on the moduli space of curves and the matrix Airy function, Commun. Math. Phys.147 (1992) 1 [INSPIRE]. · Zbl 0756.35081 · doi:10.1007/BF02099526
[8] E. Witten, Two-dimensional gravity and intersection theory on moduli space, Surveys Diff. Geom.1 (1991) 243 [INSPIRE]. · Zbl 0757.53049 · doi:10.4310/SDG.1990.v1.n1.a5
[9] A. Marshakov, A. Mironov and A. Morozov, On equivalence of topological and quantum 2D gravity, Phys. Lett.B 274 (1992) 280 [hep-th/9201011] [INSPIRE]. · doi:10.1016/0370-2693(92)91987-K
[10] R. Pandharipande, J.P. Solomon and R.J. Tessler, Intersection theory on moduli of disks, open KdV and Virasoro, arXiv:1409.2191 [INSPIRE].
[11] A. Buryak, Equivalence of the open KdV and the open Virasoro equations for the moduli space of Riemann surfaces with boundary, arXiv:1409.3888 [INSPIRE]. · Zbl 1323.35158
[12] A. Buryak, Open intersection numbers and the wave function of the KdV hierarchy, arXiv:1409.7957 [INSPIRE]. · Zbl 1339.35265
[13] H.-Z. Ke, On a conjectural solution to open KdV and Virasoro, arXiv:1409.7470 [INSPIRE].
[14] M. Bertola and D. Yang, The partition function of the extended r-reduced Kadomtsev-Petviashvili hierarchy, J. Phys.A 48 (2015) 195205 [arXiv:1411.5717] [INSPIRE]. · Zbl 1317.37067
[15] M. Sato, Soliton equations as dynamical systems on infinite dimensional Grassmann manifolds, RIMS Kokyuroku439 (1981) 30. · Zbl 0507.58029
[16] G. Segal and G. Wilson, Loop groups and equations of KdV type, Inst. Hautes Études Sci. Publ. Math.61 (1985) 5. · Zbl 0592.35112 · doi:10.1007/BF02698802
[17] M. Fukuma, H. Kawai and R. Nakayama, Infinite dimensional Grassmannian structure of two-dimensional quantum gravity, Commun. Math. Phys.143 (1992) 371 [INSPIRE]. · Zbl 0757.35076 · doi:10.1007/BF02099014
[18] M. Adler and P. van Moerbeke, A matrix integral solution to two-dimensional Wp-gravity, Commun. Math. Phys.147 (1992) 25 [INSPIRE]. · Zbl 0756.35074 · doi:10.1007/BF02099527
[19] A. Alexandrov, Cut-and-Join operator representation for Kontsewich-Witten tau-function, Mod. Phys. Lett.A 26 (2011) 2193 [arXiv:1009.4887] [INSPIRE]. · Zbl 1274.81182 · doi:10.1142/S0217732311036607
[20] R. Dijkgraaf, H.L. Verlinde and E.P. Verlinde, Loop equations and Virasoro constraints in nonperturbative 2D quantum gravity, Nucl. Phys.B 348 (1991) 435 [INSPIRE]. · doi:10.1016/0550-3213(91)90199-8
[21] A. Alexandrov, Enumerative Geometry, Tau-Functions and Heisenberg-Virasoro Algebra, Commun. Math. Phys.338 (2015) 195 [arXiv:1404.3402] [INSPIRE]. · Zbl 1344.14032 · doi:10.1007/s00220-015-2379-8
[22] S. Kharchev, A. Marshakov, A. Mironov, A. Orlov and A. Zabrodin, Matrix models among integrable theories: Forced hierarchies and operator formalism, Nucl. Phys.B 366 (1991) 569 [INSPIRE]. · doi:10.1016/0550-3213(91)90030-2
[23] A. Alexandrov and A. Zabrodin, Free fermions and tau-functions, J. Geom. Phys.67 (2013) 37 [arXiv:1212.6049] [INSPIRE]. · Zbl 1267.81196 · doi:10.1016/j.geomphys.2013.01.007
[24] V. Kac and A.S. Schwarz, Geometric interpretation of the partition function of 2D gravity, Phys. Lett.B 257 (1991) 329 [INSPIRE]. · doi:10.1016/0370-2693(91)91901-7
[25] A. Mikhailov, Ward identities and W constraints in generalized Kontsevich model, Int. J. Mod. Phys.A 9 (1994) 873 [hep-th/9303129] [INSPIRE]. · Zbl 0985.81700 · doi:10.1142/S0217751X9400039X
[26] A. Morozov and S. Shakirov, Generation of Matrix Models by W-operators, JHEP04 (2009) 064 [arXiv:0902.2627] [INSPIRE]. · doi:10.1088/1126-6708/2009/04/064
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.