×

The gradient discretisation method for linear advection problems. (English) Zbl 1451.65175

Summary: We adapt the Gradient Discretisation Method (GDM), originally designed for elliptic and parabolic partial differential equations, to the case of a linear scalar hyperbolic equations. This enables the simultaneous design and convergence analysis of various numerical schemes, corresponding to the methods known to be GDMs, such as finite elements (conforming or non-conforming, standard or mass-lumped), finite volumes on rectangular or simplicial grids, and other recent methods developed for general polytopal meshes. The scheme is of centred type, with added linear or non-linear numerical diffusion. We complement the convergence analysis with numerical tests based on the mass-lumped \(\mathbb{P}_1\) conforming and non-conforming finite element and on the hybrid finite volume method.

MSC:

65N12 Stability and convergence of numerical methods for boundary value problems involving PDEs
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs

References:

[1] K. Aziz and A. Settari, Petroleum Reservoir Simulation, Applied Science Publishers, London, 1979.
[2] J. W. Barrett and W. B. Liu, Finite element approximation of the p-Laplacian, Math. Comp. 61 (1993), no. 204, 523-537. · Zbl 0791.65084
[3] P. B. Bochev, M. D. Gunzburger and J. N. Shadid, Stability of the SUPG finite element method for transient advection-diffusion problems, Comput. Methods Appl. Mech. Engrg. 193 (2004), no. 23-26, 2301-2323. · Zbl 1067.76563
[4] E. Burman, A. Ern and M. A. Fernández, Explicit Runge-Kutta schemes and finite elements with symmetric stabilization for first-order linear PDE systems, SIAM J. Numer. Anal. 48 (2010), no. 6, 2019-2042. · Zbl 1226.65086
[5] S. Champier and T. Gallouët, Convergence d’un schéma décentré amont sur un maillage triangulaire pour un problème hyperbolique linéaire, RAIRO Modél. Math. Anal. Numér. 26 (1992), no. 7, 835-853. · Zbl 0772.65065
[6] Z. Chen, G. Huan and Y. Ma, Computational Methods for Multiphase Flows in Porous Media, Comput. Sci. Eng. 2, SIAM, Philadelphia, 2006. · Zbl 1092.76001
[7] R. Codina, Comparison of some finite element methods for solving the diffusion-convection-reaction equation, Comput. Methods Appl. Mech. Engrg. 156 (1998), no. 1-4, 185-210. · Zbl 0959.76040
[8] K. Deimling, Nonlinear Functional Analysis, Springer, Berlin, 1985. · Zbl 0559.47040
[9] R. J. DiPerna and P.-L. Lions, Ordinary differential equations, transport theory and Sobolev spaces, Invent. Math. 98 (1989), no. 3, 511-547. · Zbl 0696.34049
[10] E. G. D. do Carmo and G. B. Alvarez, A new stabilized finite element formulation for scalar convection-diffusion problems: The streamline and approximate upwind/Petrov-Galerkin method, Comput. Methods Appl. Mech. Engrg. 192 (2003), no. 31-32, 3379-3396. · Zbl 1054.76055
[11] J. Droniou and R. Eymard, Uniform-in-time convergence of numerical methods for non-linear degenerate parabolic equations, Numer. Math. 132 (2016), no. 4, 721-766. · Zbl 1342.65180
[12] J. Droniou, R. Eymard, T. Gallouët, C. Guichard and R. Herbin, The Gradient Discretisation Method, Math. Appl. (Berlin) 82, Springer, Cham, 2018. · Zbl 1435.65005
[13] A. A. Dunca, On an optimal finite element scheme for the advection equation, J. Comput. Appl. Math. 311 (2017), 522-528. · Zbl 1382.65312
[14] A. Ern and J.-L. Guermond, Theory and Practice of Finite Elements, Appl. Math. Sci. 159, Springer, New York, 2004. · Zbl 1059.65103
[15] R. E. Ewing, The Mathematics of Reservoir Simulation, Front. Appl. Math. 1, SIAM, Philadelphia, 1983. · Zbl 0533.00031
[16] R. Eymard, T. Gallouët and R. Herbin, Finite volume methods, Techniques of Scientific Computing. Part III, Handb. Num. Anal. VII, North-Holland, Amsterdam (2000), 713-1020. · Zbl 0981.65095
[17] R. Eymard, T. Gallouët, R. Herbin and J. C. Latché, A convergent finite element-finite volume scheme for the compressible Stokes problem. II. The isentropic case, Math. Comp. 79 (2010), no. 270, 649-675. · Zbl 1197.35192
[18] P. A. Forsyth, A control volume finite element approach to NAPL groundwater contamination, SIAM J. Sci. Statist. Comput. 12 (1991), no. 5, 1029-1057. · Zbl 0725.76087
[19] L. P. Franca, S. L. Frey and T. J. R. Hughes, Stabilized finite element methods. I. Application to the advective-diffusive model, Comput. Methods Appl. Mech. Engrg. 95 (1992), no. 2, 253-276. · Zbl 0759.76040
[20] R. Herbin and F. Hubert, Benchmark on discretization schemes for anisotropic diffusion problems on general grids, Finite Volumes for Complex Applications V, ISTE, London (2008), 659-692. · Zbl 1422.65314
[21] T. J. R. Hughes, L. P. Franca and M. Mallet, A new finite element formulation for computational fluid dynamics. VI. Convergence analysis of the generalized SUPG formulation for linear time-dependent multidimensional advective-diffusive systems, Comput. Methods Appl. Mech. Engrg. 63 (1987), no. 1, 97-112. · Zbl 0635.76066
[22] V. John, P. Knobloch and J. Novo, Finite elements for scalar convection-dominated equations and incompressible flow problems: a never ending story?, Comput. Vis. Sci. 19 (2018), no. 5-6, 47-63. · Zbl 07704544
[23] P. Knobloch, On the definition of the SUPG parameter, Electron. Trans. Numer. Anal. 32 (2008), 76-89. · Zbl 1171.65079
[24] K. R. Rushton, Groundwater Hydrology: Conceptual and Computational Models, John Wiley & Sons, New York, 2005.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.