Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter October 17, 2019

The Gradient Discretisation Method for Linear Advection Problems

  • Jérôme Droniou ORCID logo , Robert Eymard ORCID logo EMAIL logo , Thierry Gallouët and Raphaèle Herbin

Abstract

We adapt the Gradient Discretisation Method (GDM), originally designed for elliptic and parabolic partial differential equations, to the case of a linear scalar hyperbolic equations. This enables the simultaneous design and convergence analysis of various numerical schemes, corresponding to the methods known to be GDMs, such as finite elements (conforming or non-conforming, standard or mass-lumped), finite volumes on rectangular or simplicial grids, and other recent methods developed for general polytopal meshes. The scheme is of centred type, with added linear or non-linear numerical diffusion. We complement the convergence analysis with numerical tests based on the mass-lumped 1 conforming and non-conforming finite element and on the hybrid finite volume method.

MSC 2010: 65N12; 65N30

References

[1] K. Aziz and A. Settari, Petroleum Reservoir Simulation, Applied Science Publishers, London, 1979. Search in Google Scholar

[2] J. W. Barrett and W. B. Liu, Finite element approximation of the p-Laplacian, Math. Comp. 61 (1993), no. 204, 523–537. 10.2307/2153239Search in Google Scholar

[3] P. B. Bochev, M. D. Gunzburger and J. N. Shadid, Stability of the SUPG finite element method for transient advection-diffusion problems, Comput. Methods Appl. Mech. Engrg. 193 (2004), no. 23–26, 2301–2323. 10.1016/j.cma.2004.01.026Search in Google Scholar

[4] E. Burman, A. Ern and M. A. Fernández, Explicit Runge-Kutta schemes and finite elements with symmetric stabilization for first-order linear PDE systems, SIAM J. Numer. Anal. 48 (2010), no. 6, 2019–2042. 10.1137/090757940Search in Google Scholar

[5] S. Champier and T. Gallouët, Convergence d’un schéma décentré amont sur un maillage triangulaire pour un problème hyperbolique linéaire, RAIRO Modél. Math. Anal. Numér. 26 (1992), no. 7, 835–853. 10.1051/m2an/1992260708351Search in Google Scholar

[6] Z. Chen, G. Huan and Y. Ma, Computational Methods for Multiphase Flows in Porous Media, Comput. Sci. Eng. 2, SIAM, Philadelphia, 2006. 10.1137/1.9780898718942Search in Google Scholar

[7] R. Codina, Comparison of some finite element methods for solving the diffusion-convection-reaction equation, Comput. Methods Appl. Mech. Engrg. 156 (1998), no. 1–4, 185–210. 10.1016/S0045-7825(97)00206-5Search in Google Scholar

[8] K. Deimling, Nonlinear Functional Analysis, Springer, Berlin, 1985. 10.1007/978-3-662-00547-7Search in Google Scholar

[9] R. J. DiPerna and P.-L. Lions, Ordinary differential equations, transport theory and Sobolev spaces, Invent. Math. 98 (1989), no. 3, 511–547. 10.1007/BF01393835Search in Google Scholar

[10] E. G. D. do Carmo and G. B. Alvarez, A new stabilized finite element formulation for scalar convection-diffusion problems: The streamline and approximate upwind/Petrov–Galerkin method, Comput. Methods Appl. Mech. Engrg. 192 (2003), no. 31–32, 3379–3396. 10.1016/S0045-7825(03)00292-5Search in Google Scholar

[11] J. Droniou and R. Eymard, Uniform-in-time convergence of numerical methods for non-linear degenerate parabolic equations, Numer. Math. 132 (2016), no. 4, 721–766. 10.1007/s00211-015-0733-6Search in Google Scholar

[12] J. Droniou, R. Eymard, T. Gallouët, C. Guichard and R. Herbin, The Gradient Discretisation Method, Math. Appl. (Berlin) 82, Springer, Cham, 2018. 10.1007/978-3-319-79042-8Search in Google Scholar

[13] A. A. Dunca, On an optimal finite element scheme for the advection equation, J. Comput. Appl. Math. 311 (2017), 522–528. 10.1016/j.cam.2016.08.029Search in Google Scholar

[14] A. Ern and J.-L. Guermond, Theory and Practice of Finite Elements, Appl. Math. Sci. 159, Springer, New York, 2004. 10.1007/978-1-4757-4355-5Search in Google Scholar

[15] R. E. Ewing, The Mathematics of Reservoir Simulation, Front. Appl. Math. 1, SIAM, Philadelphia, 1983. 10.1137/1.9781611971071Search in Google Scholar

[16] R. Eymard, T. Gallouët and R. Herbin, Finite volume methods, Techniques of Scientific Computing. Part III, Handb. Num. Anal. VII, North-Holland, Amsterdam (2000), 713–1020. 10.1016/S1570-8659(00)07005-8Search in Google Scholar

[17] R. Eymard, T. Gallouët, R. Herbin and J. C. Latché, A convergent finite element-finite volume scheme for the compressible Stokes problem. II. The isentropic case, Math. Comp. 79 (2010), no. 270, 649–675. 10.1090/S0025-5718-09-02310-2Search in Google Scholar

[18] P. A. Forsyth, A control volume finite element approach to NAPL groundwater contamination, SIAM J. Sci. Statist. Comput. 12 (1991), no. 5, 1029–1057. 10.1137/0912055Search in Google Scholar

[19] L. P. Franca, S. L. Frey and T. J. R. Hughes, Stabilized finite element methods. I. Application to the advective-diffusive model, Comput. Methods Appl. Mech. Engrg. 95 (1992), no. 2, 253–276. 10.1016/0045-7825(92)90143-8Search in Google Scholar

[20] R. Herbin and F. Hubert, Benchmark on discretization schemes for anisotropic diffusion problems on general grids, Finite Volumes for Complex Applications V, ISTE, London (2008), 659–692. Search in Google Scholar

[21] T. J. R. Hughes, L. P. Franca and M. Mallet, A new finite element formulation for computational fluid dynamics. VI. Convergence analysis of the generalized SUPG formulation for linear time-dependent multidimensional advective-diffusive systems, Comput. Methods Appl. Mech. Engrg. 63 (1987), no. 1, 97–112. 10.1016/0045-7825(87)90125-3Search in Google Scholar

[22] V. John, P. Knobloch and J. Novo, Finite elements for scalar convection-dominated equations and incompressible flow problems: a never ending story?, Comput. Vis. Sci. 19 (2018), no. 5–6, 47–63. 10.1007/s00791-018-0290-5Search in Google Scholar

[23] P. Knobloch, On the definition of the SUPG parameter, Electron. Trans. Numer. Anal. 32 (2008), 76–89. Search in Google Scholar

[24] K. R. Rushton, Groundwater Hydrology: Conceptual and Computational Models, John Wiley & Sons, New York, 2005. Search in Google Scholar

Received: 2019-03-25
Revised: 2019-07-19
Accepted: 2019-09-29
Published Online: 2019-10-17
Published in Print: 2020-07-01

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 24.10.2024 from https://www.degruyter.com/document/doi/10.1515/cmam-2019-0060/html
Scroll to top button