×

Finite elements for scalar convection-dominated equations and incompressible flow problems: a never ending story? (English) Zbl 07704544

Summary: The contents of this paper is twofold. First, important recent results concerning finite element methods for convection-dominated problems and incompressible flow problems are described that illustrate the activities in these topics. Second, a number of, in our opinion, important open problems in these fields are discussed. The exposition concentrates on \(H^1\)-conforming finite elements.

MSC:

65Nxx Numerical methods for partial differential equations, boundary value problems

Software:

SHASTA; ParMooN

References:

[1] Acosta, G., Durán, R.G.: The maximum angle condition for mixed and nonconforming elements: application to the Stokes equations. SIAM J. Numer. Anal. 37(1), 18-36 (1999) · Zbl 0948.65115
[2] Ahmed, N., Bartsch, C., John, V., Wilbrandt, U.: An Assessment of Some Solvers for Saddle Point Problems Emerging from the Incompressible Navier-Stokes Equations. Comput. Methods Appl. Mech. Eng. 331, 492-513 (2018) · Zbl 1439.76040
[3] Ainsworth, M., Barrenechea, G.R., Wachtel, A.: Stabilization of high aspect ratio mixed finite elements for incompressible flow. SIAM J. Numer. Anal. 53(2), 1107-1120 (2015) · Zbl 1322.76038
[4] Ainsworth, M., Coggins, P.: The stability of mixed \[hp\] hp-finite element methods for Stokes flow on high aspect ratio elements. SIAM J. Numer. Anal. 38(5), 1721-1761 (2000) · Zbl 0989.76039
[5] Allendes, A., Durán, F., Rankin, R.: Error estimation for low-order adaptive finite element approximations for fluid flow problems. IMA J. Numer. Anal. 36(4), 1715-1747 (2016) · Zbl 1433.76065
[6] Apel, T., Knopp, T., Lube, G.: Stabilized finite element methods with anisotropic mesh refinement for the Oseen problem. Appl. Numer. Math. 58(12), 1830-1843 (2008) · Zbl 1148.76029
[7] Apel, T., Randrianarivony, H.M.: Stability of discretizations of the Stokes problem on anisotropic meshes. Math. Comput. Simul. 61(3-6), 437-447 (2003) · Zbl 1205.76072
[8] Apel, T., Matthies, G.: Nonconforming, anisotropic, rectangular finite elements of arbitrary order for the Stokes problem. SIAM J. Numer. Anal. 46(4), 1867-1891 (2008) · Zbl 1205.65307
[9] Apel, T., Nicaise, S.: The inf-sup condition for low order elements on anisotropic meshes. Calcolo 41(2), 89-113 (2004) · Zbl 1108.65117
[10] Apel, T., Nicaise, S., Schöberl, J.: A non-conforming finite element method with anisotropic mesh grading for the Stokes problem in domains with edges. IMA J. Numer. Anal. 21(4), 843-856 (2001) · Zbl 0998.65116
[11] Arminjon, P., Dervieux, A.: Construction of TVD-like artificial viscosities on two-dimensional arbitrary FEM grids. J. Comput. Phys. 106(1), 176-198 (1993) · Zbl 0771.65062
[12] Arndt, D., Dallmann, H., Lube, G.: Local projection FEM stabilization for the time-dependent incompressible Navier-Stokes problem. Numer. Methods Part. Differ. Equ. 31(4), 1224-1250 (2015) · Zbl 1446.76126
[13] Augustin, M., Caiazzo, A., Fiebach, A., Fuhrmann, J., John, V., Linke, A., Umla, R.: An assessment of discretizations for convection-dominated convection – diffusion equations. Comput. Methods Appl. Mech. Eng. 200(47-48), 3395-3409 (2011) · Zbl 1230.76021
[14] Babuška, I.: Error-bounds for finite element method. Numer. Math. 16, 322-333 (1971) · Zbl 0214.42001
[15] Bardos, C.W., Titi, E.S.: Mathematics and turbulence: where do we stand? J. Turbul. 14(3), 42-76 (2013)
[16] Barrenechea, G.R., John, V., Knobloch, P.: A local projection stabilization finite element method with nonlinear crosswind diffusion for convection – diffusion – reaction equations. ESAIM Math. Model. Numer. Anal. 47(5), 1335-1366 (2013) · Zbl 1303.65082
[17] Barrenechea, G.R., John, V., Knobloch, P.: Some analytical results for an algebraic flux correction scheme for a steady convection – diffusion equation in one dimension. IMA J. Numer. Anal. 35(4), 1729-1756 (2015) · Zbl 1332.65105
[18] Barrenechea, G.R., John, V., Knobloch, P.: Analysis of algebraic flux correction schemes. SIAM J. Numer. Anal. 54(4), 2427-2451 (2016) · Zbl 1346.65048
[19] Barrenechea, G.R., John, V., Knobloch, P.: An algebraic flux correction scheme satisfying the discrete maximum principle and linearity preservation on general meshes. Math. Models Methods Appl. Sci. 27(3), 525-548 (2017) · Zbl 1360.65275
[20] Barrenechea, G.R., Valentin, F.: Consistent local projection stabilized finite element methods. SIAM J. Numer. Anal. 48(5), 1801-1825 (2010) · Zbl 1219.65131
[21] Barrenechea, G.R., Valentin, F.: A residual local projection method for the Oseen equation. Comput. Methods Appl. Mech. Eng. 199(29-32), 1906-1921 (2010) · Zbl 1231.76135
[22] Barrenechea, G.R., Valentin, F.: Beyond pressure stabilization: a low-order local projection method for the Oseen equation. Int. J. Numer. Methods Eng. 86(7), 801-815 (2011) · Zbl 1235.76059
[23] Barrios, T.P., Cascón, J.M., González, M.: Augmented mixed finite element method for the Oseen problem: a priori and a posteriori error analyses. Comput. Methods Appl. Mech. Eng. 313, 216-238 (2017) · Zbl 1439.76049
[24] Bazilevs, Y., Beirão da Veiga, L., Cottrell, J.A., Hughes, T.J.R., Sangalli, G.: Isogeometric analysis: approximation, stability and error estimates for \[h\] h-refined meshes. Math. Models Methods Appl. Sci. 16(7), 1031-1090 (2006) · Zbl 1103.65113
[25] Bazilevs, Y., Calo, V.M., Tezduyar, T.E., Hughes, T.J.R.: \[YZ\beta\] YZβ discontinuity capturing for advection-dominated processes with application to arterial drug delivery. Int. J. Numer. Methods Fluids 54(6-8), 593-608 (2007) · Zbl 1207.76049
[26] Becker, R., Braack, M.: A finite element pressure gradient stabilization for the Stokes equations based on local projections. Calcolo 38(4), 173-199 (2001) · Zbl 1008.76036
[27] Becker, R.; Braack, M.; Feistauer, M. (ed.); Dolejší, V. (ed.); Knobloch, P. (ed.); Najzar, K. (ed.), A two-level stabilization scheme for the Navier-Stokes equations, 123-130 (2004), Berlin · Zbl 1198.76062
[28] Benzi, M., Olshanskii, M.A.: An augmented Lagrangian-based approach to the Oseen problem. SIAM J. Sci. Comput. 28(6), 2095-2113 (2006) · Zbl 1126.76028
[29] Benzi, M., Wang, Z.: Analysis of augmented Lagrangian-based preconditioners for the steady incompressible Navier-Stokes equations. SIAM J. Sci. Comput. 33(5), 2761-2784 (2011) · Zbl 1298.76114
[30] Berrone, S.: Robustness in a posteriori error analysis for FEM flow models. Numer. Math. 91(3), 389-422 (2002) · Zbl 1009.76049
[31] Bochev, P., Gunzburger, M.: An absolutely stable pressure-Poisson stabilized finite element method for the Stokes equations. SIAM J. Numer. Anal. 42(3), 1189-1207 (2004) · Zbl 1159.76346
[32] Boris, J.P., Book, D.L.: Flux-corrected transport. I. SHASTA, a fluid transport algorithm that works. J. Comput. Phys. 11(1), 38-69 (1973) · Zbl 0251.76004
[33] Braack, M.: A stabilized finite element scheme for the Navier-Stokes equations on quadrilateral anisotropic meshes. M2AN. Math. Model. Numer. Anal. 42(6), 903-924 (2008) · Zbl 1149.76026
[34] Braack, M., Burman, E., Taschenberger, N.: Duality based a posteriori error estimation for quasi-periodic solutions using time averages. SIAM J. Sci. Comput. 33(5), 2199-2216 (2011) · Zbl 1298.65146
[35] Braack, M., Lube, G., Röhe, L.: Divergence preserving interpolation on anisotropic quadrilateral meshes. Comput. Methods Appl. Math. 12(2), 123-138 (2012) · Zbl 1284.41001
[36] Braack, M., Mucha, P.B.: Directional do-nothing condition for the Navier-Stokes equations. J. Comput. Math. 32(5), 507-521 (2014) · Zbl 1324.76015
[37] Brennecke, C., Linke, A., Merdon, C., Schöberl, J.: Optimal and pressure-independent \[L^2\] L2 velocity error estimates for a modified Crouzeix-Raviart Stokes element with BDM reconstructions. J. Comput. Math. 33(2), 191-208 (2015) · Zbl 1340.76024
[38] Brezzi, F.: On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers. Rev. Française Automat. Informat. Recherche Opérationnelle Sér. Rouge 8(R-2), 129-151 (1974) · Zbl 0338.90047
[39] Brezzi, F., Fortin, M.: A minimal stabilisation procedure for mixed finite element methods. Numer. Math. 89(3), 457-491 (2001) · Zbl 1009.65067
[40] Brezzi, F., Pitkäranta, J.: On the stabilization of finite element approximations of the Stokes equations. In: Efficient Solutions of Elliptic Systems (Kiel, 1984), Volume 10 of Notes Numer. Fluid Mech., pp. 11-19. Friedr. Vieweg, Braunschweig (1984) · Zbl 0552.76002
[41] Brooks, A.N., Hughes, T.J.R.: Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations. Comput. Methods Appl. Mech. Eng. 32(1-3), 199-259 (1982) · Zbl 0497.76041
[42] Buffa, A., de Falco, C., Sangalli, G.: IsoGeometric analysis: stable elements for the 2D Stokes equation. Int. J. Numer. Methods Fluids 65(11-12), 1407-1422 (2011) · Zbl 1429.76044
[43] Bulling, J., John, V., Knobloch, P.: Isogeometric analysis for flows around a cylinder. Appl. Math. Lett. 63, 65-70 (2017) · Zbl 1346.76025
[44] Burman, E.: A posteriori error estimation for interior penalty finite element approximations of the advection – reaction equation. SIAM J. Numer. Anal. 47(5), 3584-3607 (2009) · Zbl 1205.65249
[45] Burman, E.: Robust error estimates for stabilized finite element approximations of the two dimensional Navier-Stokes’ equations at high Reynolds number. Comput. Methods Appl. Mech. Eng. 288, 2-23 (2015) · Zbl 1423.76214
[46] Burman, E., Ern, A.: Stabilized Galerkin approximation of convection – diffusion – reaction equations: discrete maximum principle and convergence. Math. Comput. 74(252), 1637-1652 (2005). (electronic) · Zbl 1078.65088
[47] Burman, E., Ern, A., Fernández, M.A.: Fractional-step methods and finite elements with symmetric stabilization for the transient Oseen problem. ESAIM: M2AN 51(2), 487-507 (2017) · Zbl 1398.76097
[48] Burman, E., Fernández, M.A.: Continuous interior penalty finite element method for the time-dependent Navier-Stokes equations: space discretization and convergence. Numer. Math. 107(1), 39-77 (2007) · Zbl 1117.76032
[49] Burman, E., Guzmán, J., Leykekhman, D.: Weighted error estimates of the continuous interior penalty method for singularly perturbed problems. IMA J. Numer. Anal. 29(2), 284-314 (2009) · Zbl 1166.65054
[50] Burman, E., Hansbo, P.: Edge stabilization for Galerkin approximations of convection – diffusion – reaction problems. Comput. Methods Appl. Mech. Eng. 193(15-16), 1437-1453 (2004) · Zbl 1085.76033
[51] Burman, E., Hansbo, P.: Edge stabilization for the generalized Stokes problem: a continuous interior penalty method. Comput. Methods Appl. Mech. Eng. 195(19-22), 2393-2410 (2006) · Zbl 1125.76038
[52] Burman, E., Santos, I.P.: Error estimates for transport problems with high Péclet number using a continuous dependence assumption. J. Comput. Appl. Math. 309, 267-286 (2017) · Zbl 1457.76097
[53] Charnyi, S., Heister, T., Olshanskii, M.A., Rebholz, L.G.: On conservation laws of Navier-Stokes Galerkin discretizations. J. Comput. Phys. 337, 289-308 (2017) · Zbl 1415.65222
[54] Chen, H.: Pointwise error estimates for finite element solutions of the Stokes problem. SIAM J. Numer. Anal. 44(1), 1-28 (2006) · Zbl 1112.65108
[55] Chizhonkov, E.V., Olshanskii, M.A.: On the domain geometry dependence of the LBB condition. M2AN Math. Model. Numer. Anal. 34(5), 935-951 (2000) · Zbl 1006.76052
[56] Codina, R., Blasco, J.: A finite element formulation for the Stokes problem allowing equal velocity – pressure interpolation. Comput. Methods Appl. Mech. Eng. 143(3-4), 373-391 (1997) · Zbl 0893.76040
[57] Crouzeix, M., Raviart, P.-A.: Conforming and nonconforming finite element methods for solving the stationary Stokes equations. I. Rev. Française Automat. Informat. Recherche Opérationnelle Sér. Rouge 7(R-3), 33-75 (1973) · Zbl 0302.65087
[58] Dallmann, H., Arndt, D.: Stabilized finite element methods for the Oberbeck-Boussinesq model. J. Sci. Comput. 69(1), 244-273 (2016) · Zbl 1457.65074
[59] de Frutos, J., García-Archilla, B., John, V., Novo, J.: An adaptive SUPG method for evolutionary convection – diffusion equations. Comput. Methods Appl. Mech. Eng. 273, 219-237 (2014) · Zbl 1296.76090
[60] de Frutos, J., García-Archilla, B., John, V., Novo, J.: Analysis of the grad-div stabilization for the time-dependent Navier-Stokes equations with inf-sup stable finite elements. Adv. Comput. Math. 44, 195-225 (2018) · Zbl 1404.65188
[61] de Frutos, J., García-Archilla, B., John, V., Novo, J.: Error Analysis of Non Inf-sup Stable Discretizations of the time-dependent Navier-Stokes equations with Local Projection Stabilization. Technical Report arXiv:1709.01011 (2017) · Zbl 1496.65160
[62] de Frutos, J., García-Archilla, B., Novo, J.: Local error estimates for the SUPG method applied to evolutionary convection – reaction – diffusion equations. J. Sci. Comput. 66(2), 528-554 (2016) · Zbl 1336.65151
[63] Dohrmann, C.R., Bochev, P.B.: A stabilized finite element method for the Stokes problem based on polynomial pressure projections. Int. J. Numer. Methods Fluids 46(2), 183-201 (2004) · Zbl 1060.76569
[64] Douglas Jr., J., Wang, J.P.: An absolutely stabilized finite element method for the Stokes problem. Math. Comput. 52(186), 495-508 (1989) · Zbl 0669.76051
[65] Du, S., Zhang, Z.: A robust residual-type a posteriori error estimator for convection – diffusion equations. J. Sci. Comput. 65(1), 138-170 (2015) · Zbl 1333.65121
[66] Durango, F., Novo, J.: Two-grid mixed finite-element approximations to the Navier-Stokes equations based on a Newton type-step. J. Sci. Comput. 74, 456-473 (2018) · Zbl 1404.65166
[67] Eigel, M., Merdon, C.: Equilibration a posteriori error estimation for convection – diffusion – reaction problems. J. Sci. Comput. 67(2), 747-768 (2016) · Zbl 1353.65113
[68] Elman, H., Howle, V.E., Shadid, J., Shuttleworth, R., Tuminaro, R.: Block preconditioners based on approximate commutators. SIAM J. Sci. Comput. 27(5), 1651-1668 (2006) · Zbl 1100.65042
[69] Elman, H.C., Silvester, D.J., Wathen, A.J.: Finite Elements and Fast Iterative Solvers: With Applications in Incompressible Fluid Dynamics, 2nd edn. Oxford University Press, Oxford (2014). Numerical Mathematics and Scientific Computation · Zbl 1304.76002
[70] Evans, J.A., Hughes, T.J.R.: Isogeometric divergence-conforming B-splines for the steady Navier-Stokes equations. Math. Models Methods Appl. Sci. 23(8), 1421-1478 (2013) · Zbl 1383.76337
[71] Evans, J.A., Hughes, T.J.R.: Isogeometric divergence-conforming B-splines for the unsteady Navier-Stokes equations. J. Comput. Phys 241, 141-167 (2013) · Zbl 1349.76054
[72] Falk, R.S., Neilan, M.: Stokes complexes and the construction of stable finite elements with pointwise mass conservation. SIAM J. Numer. Anal. 51(2), 1308-1326 (2013) · Zbl 1268.76032
[73] Girault, V., Nochetto, R.H., Scott, L.R.: Max-norm estimates for Stokes and Navier-Stokes approximations in convex polyhedra. Numer. Math. 131(4), 771-822 (2015) · Zbl 1401.76087
[74] Girault, V., Raviart, P.-A.: Finite Element Approximation of the Navier-Stokes Equations, Volume 749 of Lecture Notes in Mathematics. Springer, Berlin (1979) · Zbl 0413.65081
[75] Girault, V., Raviart, P.-A.: Finite element methods for Navier-Stokes equations. Theory and algorithms. In: Volume 5 of Springer Series in Computational Mathematics. Springer, Berlin (1986) · Zbl 0585.65077
[76] Girault, V., Scott, L.R.: A quasi-local interpolation operator preserving the discrete divergence. Calcolo 40(1), 1-19 (2003) · Zbl 1072.65014
[77] Glowinski, R.; Ciarlet, PG (ed.); Lions, JL (ed.), Finite element methods for incompressible viscous flow, No. IX, 3-1176 (2003), Amsterdam · Zbl 1040.76001
[78] Godunov, S.K.: A difference method for numerical calculation of discontinuous solutions of the equations of hydrodynamics. Mat. Sb. (N.S.) 47(89), 271-306 (1959) · Zbl 0171.46204
[79] Guzmán, J., Leykekhman, D.: Pointwise error estimates of finite element approximations to the Stokes problem on convex polyhedra. Math. Comput. 81(280), 1879-1902 (2012) · Zbl 1307.65165
[80] Guzmán, J., Neilan, M.: Conforming and divergence-free Stokes elements on general triangular meshes. Math. Comput. 83(285), 15-36 (2014) · Zbl 1322.76041
[81] Guzmán, J., Sánchez, M.A.: Max-norm stability of low order Taylor-Hood elements in three dimensions. J. Sci. Comput. 65(2), 598-621 (2015) · Zbl 1327.65240
[82] Hauke, G., Doweidar, M.H., Fuster, D.: A posteriori error estimation for computational fluid dynamics: the variational multiscale approach. In: de Borst R., Ramm E. (eds) Multiscale Methods in Computational Mechanics, Lecture Notes in Applied and Computational Mechanics, vol. 55. Springer, Dordrecht (2010) · Zbl 1323.76084
[83] Hauke, G., Doweidar, M.H., Fuster, D., Gómez, A., Sayas, J.: Application of variational a-posteriori multiscale error estimation to higher-order elements. Comput. Mech. 38(4-5), 356-389 (2006) · Zbl 1160.76026
[84] Hauke, G., Fuster, D., Doweidar, M.H.: Variational multiscale a-posteriori error estimation for multi-dimensional transport problems. Comput. Methods Appl. Mech. Eng. 197(33-40), 2701-2718 (2008) · Zbl 1194.76119
[85] Hosseini, B.S., Möller, M., Turek, S.: Isogeometric analysis of the Navier-Stokes equations with Taylor-Hood B-spline elements. Appl. Math. Comput. 267, 264-281 (2015) · Zbl 1410.76043
[86] Hughes, T.J.R., Cottrell, J.A., Bazilevs, Y.: Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput. Methods Appl. Mech. Eng. 194(39-41), 4135-4195 (2005) · Zbl 1151.74419
[87] Hughes, T.J.R.: Multiscale phenomena: Green’s functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods. Comput. Methods Appl. Mech. Eng. 127(1-4), 387-401 (1995) · Zbl 0866.76044
[88] Hughes, T.J.R., Brooks, A.: A multidimensional upwind scheme with no crosswind diffusion. In: Finite Element Methods for Convection Dominated Flows (Papers, Winter Ann. Meeting Amer. Soc. Mech. Engrs., New York, 1979), Volume 34 of AMD, pp. 19-35. Amer. Soc. Mech. Engrs. (ASME), New York (1979) · Zbl 0423.76067
[89] Hughes, T.J.R., Franca, L.P.: A new finite element formulation for computational fluid dynamics. VII. The Stokes problem with various well-posed boundary conditions: symmetric formulations that converge for all velocity/pressure spaces. Comput. Methods Appl. Mech. Eng. 65(1), 85-96 (1987) · Zbl 0635.76067
[90] Hughes, T.J.R., Franca, L.P., Balestra, M.: A new finite element formulation for computational fluid dynamics. V. Circumventing the Babuška-Brezzi condition: a stable Petrov-Galerkin formulation of the Stokes problem accommodating equal-order interpolations. Comput. Methods Appl. Mech. Eng. 59(1), 85-99 (1986) · Zbl 0622.76077
[91] Hughes, T.J.R., Sangalli, G.: Variational multiscale analysis: the fine-scale Green’s function, projection, optimization, localization, and stabilized methods. SIAM J. Numer. Anal. 45(2), 539-557 (2007) · Zbl 1152.65111
[92] John, V.: A numerical study of a posteriori error estimators for convection – diffusion equations. Comput. Methods Appl. Mech. Eng. 190(5-7), 757-781 (2000) · Zbl 0973.76049
[93] John, V.: Finite element methods for incompressible flow problems, vol. 51 of Springer Series in Computational Mathematics. Springer, Cham (2016) · Zbl 1358.76003
[94] John, V., Kaiser, K., Novo, J.: Finite element methods for the incompressible Stokes equations with variable viscosity. ZAMM Z. Angew. Math. Mech. 96(2), 205-216 (2016) · Zbl 1538.65524
[95] John, V., Knobloch, P.: On spurious oscillations at layers diminishing (SOLD) methods for convection – diffusion equations. I. A review. Comput. Methods Appl. Mech. Eng. 196(17-20), 2197-2215 (2007) · Zbl 1173.76342
[96] John, V., Knobloch, P.: On spurious oscillations at layers diminishing (SOLD) methods for convection-diffusion equations. II. Analysis for \[P_1\] P1 and \[Q_1\] Q1 finite elements. Comput. Methods Appl. Mech. Eng. 197(21-24), 1997-2014 (2008) · Zbl 1194.76122
[97] John, V., Layton, W., Manica, C.C.: Convergence of time-averaged statistics of finite element approximations of the Navier-Stokes equations. SIAM J. Numer. Anal. 46(1), 151-179 (2007) · Zbl 1157.74029
[98] John, V., Linke, A., Merdon, C., Neilan, M., Rebholz, L.G.: On the divergence constraint in mixed finite element methods for incompressible flows. SIAM Rev. 59, 492-544 (2017) · Zbl 1426.76275
[99] John, V., Mitkova, T., Roland, M., Sundmacher, K., Tobiska, L., Voigt, A.: Simulations of population balance systems with one internal coordinate using finite element methods. Chem. Eng. Sci. 64(4), 733-741 (2009)
[100] John, V., Novo, J.: On (essentially) non-oscillatory discretizations of evolutionary convection – diffusion equations. J. Comput. Phys. 231(4), 1570-1586 (2012) · Zbl 1242.65164
[101] John, V., Novo, J.: A robust SUPG norm a posteriori error estimator for stationary convection – diffusion equations. Comput. Methods Appl. Mech. Eng. 255, 289-305 (2013) · Zbl 1297.65157
[102] John, V., Schmeyer, E.: Finite element methods for time-dependent convection – diffusion – reaction equations with small diffusion. Comput. Methods Appl. Mech. Eng. 198(3-4), 475-494 (2008) · Zbl 1228.76088
[103] John, V., Schumacher, L.: A study of isogeometric analysis for scalar convection – diffusion equations. Appl. Math. Lett. 27, 43-48 (2014) · Zbl 1311.65146
[104] Johnson, C., Schatz, A.H., Wahlbin, L.B.: Crosswind smear and pointwise errors in streamline diffusion finite element methods. Math. Comput. 49(179), 25-38 (1987) · Zbl 0629.65111
[105] Knobloch, P.: Improvements of the Mizukami-Hughes method for convection – diffusion equations. Comput. Methods Appl. Mech. Eng. 196(1-3), 579-594 (2006) · Zbl 1120.76328
[106] Knopp, T., Lube, G., Rapin, G.: Stabilized finite element methods with shock capturing for advection – diffusion problems. Comput. Methods Appl. Mech. Eng. 191(27-28), 2997-3013 (2002) · Zbl 1001.76058
[107] Kuzmin, D.: On the design of general-purpose flux limiters for finite element schemes. I. Scalar convection. J. Comput. Phys. 219(2), 513-531 (2006) · Zbl 1189.76342
[108] Kuzmin, D.; Manolis, P. (ed.); Eugenio, O. (ed.); Bernard, S. (ed.), Algebraic flux correction for finite element discretizations of coupled systems, 1-5 (2007), Barcelona
[109] Kuzmin, D.: Linearity-preserving flux correction and convergence acceleration for constrained Galerkin schemes. J. Comput. Appl. Math. 236(9), 2317-2337 (2012) · Zbl 1241.65083
[110] Kuzmin, D.; Möller, M.; Kuzmin, D. (ed.); Löhner, R. (ed.); Turek, S. (ed.), Algebraic flux correction I. Scalar conservation laws, 155-206 (2005), Berlin · Zbl 1094.76040
[111] Kuzmin, D., Turek, S.: High-resolution FEM-TVD schemes based on a fully multidimensional flux limiter. J. Comput. Phys. 198(1), 131-158 (2004) · Zbl 1107.76352
[112] Layton, W.: Introduction to the Numerical Analysis of Incompressible Viscous Flows, Volume 6 of Computational Science & Engineering. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2008) · Zbl 1153.76002
[113] Lederer, P.L., Linke, A., Merdon, C., Schöberl, J.: Divergence-free reconstruction operators for pressure-robust Stokes discretizations with continuous pressure finite elements. SIAM J. Numer. Anal. 55(3), 1291-1314 (2017) · Zbl 1457.65202
[114] Liao, Q., Silvester, D.: Robust stabilized Stokes approximation methods for highly stretched grids. IMA J. Numer. Anal. 33(2), 413-431 (2013) · Zbl 1328.76043
[115] Linke, A.: On the role of the Helmholtz decomposition in mixed methods for incompressible flows and a new variational crime. Comput. Methods Appl. Mech. Eng. 268, 782-800 (2014) · Zbl 1295.76007
[116] Linke, A., Matthies, G., Tobiska, L.: Robust arbitrary order mixed finite element methods for the incompressible Stokes equations with pressure independent velocity errors. ESAIM Math. Model. Numer. Anal. 50(1), 289-309 (2016) · Zbl 1381.76186
[117] Linke, A., Merdon, C.: Pressure-robustness and discrete Helmholtz projectors in mixed finite element methods for the incompressible Navier-Stokes equations. Comput. Methods Appl. Mech. Eng. 311, 304-326 (2016) · Zbl 1439.76083
[118] Löhner, R., Morgan, K., Peraire, J., Vahdati, M.: Finite element flux-corrected transport (FEM-FCT) for the Euler and Navier-Stokes equations. Int. J. Numer. Methods Fluids 7(10), 1093-1109 (1987) · Zbl 0633.76070
[119] Lube, G., Arndt, D., Dallmann, H.: Understanding the limits of inf-sup stable Galerkin-FEM for incompressible flows. In: Boundary and interior layers, computational and asymptotic methods—BAIL 2014, volume 108 of Lect. Notes Comput. Sci. Eng., pp. 147-169. Springer, Cham (2015) · Zbl 1427.76136
[120] Lube, G., Rapin, G.: Residual-based stabilized higher-order FEM for advection-dominated problems. Comput. Methods Appl. Mech. Eng. 195(33-36), 4124-4138 (2006) · Zbl 1125.76042
[121] Micheletti, S., Perotto, S., Picasso, M.: Stabilized finite elements on anisotropic meshes: a priori error estimates for the advection – diffusion and the Stokes problems. SIAM J. Numer. Anal. 41(3), 1131-1162 (2003) · Zbl 1053.65089
[122] Mizukami, A., Hughes, T.J.R.: A Petrov-Galerkin finite element method for convection-dominated flows: an accurate upwinding technique for satisfying the maximum principle. Comput. Methods Appl. Mech. Eng. 50(2), 181-193 (1985) · Zbl 0553.76075
[123] Nävert, U.: A finite element method for convection – diffusion problems. Ph.D. Thesis, Chalmers University of Technology (1982)
[124] Niijima, K.: Pointwise error estimates for a streamline diffusion finite element scheme. Numer. Math. 56(7), 707-719 (1990) · Zbl 0691.65077
[125] Roos, H.-G., Stynes, M.: Some open questions in the numerical analysis of singularly perturbed differential equations. Comput. Methods Appl. Math. 15(4), 531-550 (2015) · Zbl 1329.65278
[126] Roos, H.-G., Stynes, M., Tobiska, L.: Numerical Methods for Singularly Perturbed Differential Equations. Convection-Diffusion and Flow Problems, vol. 24 of Springer Series in Computational Mathematics. Springer, Berlin (1996) · Zbl 0844.65075
[127] Roos, H.-G., Stynes, M., Tobiska, L.: Robust Numerical Methods for Singularly Perturbed Differential Equations. Convection-Diffusion-Reaction and Flow Problems, vol. 24 of Springer Series in Computational Mathematics, 2nd edn. Springer, Berlin (2008) · Zbl 1155.65087
[128] Saad, Y.: A flexible inner – outer preconditioned GMRES algorithm. SIAM J. Sci. Comput. 14(2), 461-469 (1993) · Zbl 0780.65022
[129] Sangalli, G.: Robust a-posteriori estimator for advection – diffusion – reaction problems. Math. Comput. 77(261), 41-70 (2008). (electronic) · Zbl 1130.65083
[130] Schötzau, D., Schwab, C., Stenberg, R.: Mixed \[hp\] hp-FEM on anisotropic meshes. II. Hanging nodes and tensor products of boundary layer meshes. Numer. Math. 83(4), 667-697 (1999) · Zbl 0958.76049
[131] Schroeder, P.W., Lube, G.: Pressure-robust analysis of divergence-free and conforming FEM for evolutionary incompressible Navier-Stokes flows. J. Num. Math., Accepted for publication (2017) · Zbl 1388.76151
[132] Schwegler, K., Bause, M.: Goal-oriented a posteriori error control for nonstationary convection-dominated transport problems. Technical Report arXiv:1601.06544 (2016)
[133] Scott, L.R., Vogelius, M.: Conforming finite element methods for incompressible and nearly incompressible continua. In: Large-Scale Computations in Fluid Mechanics, Part 2 (La Jolla, Calif., 1983), Volume 22 of Lectures in Appl. Math., pp. 221-244. Amer. Math. Soc., Providence (1985) · Zbl 0582.76028
[134] Speleers, H., Manni, C., Pelosi, F., Sampoli, M.L.: Isogeometric analysis with Powell-Sabin splines for advection – diffusion – reaction problems. Comput. Methods Appl. Mech. Eng. 221/222, 132-148 (2012) · Zbl 1253.65026
[135] Tabata, M., Tagami, D.: Error estimates for finite element approximations of drag and lift in nonstationary Navier-Stokes flows. Japan J. Ind. Appl. Math. 17(3), 371-389 (2000) · Zbl 1306.76026
[136] Tobiska, L., Verfürth, R.: Robust a posteriori error estimates for stabilized finite element methods. IMA J. Numer. Anal. 35(4), 1652-1671 (2015) · Zbl 1334.65186
[137] Vanka, S.P.: Block-implicit multigrid solution of Navier-Stokes equations in primitive variables. J. Comput. Phys. 65(1), 138-158 (1986) · Zbl 0606.76035
[138] Verfürth, R.: A posteriori error estimators for convection – diffusion equations. Numer. Math. 80(4), 641-663 (1998) · Zbl 0913.65095
[139] Verfürth, R.: Robust a posteriori error estimates for stationary convection – diffusion equations. SIAM J. Numer. Anal. 43(4), 1766-1782 (2005). (electronic) · Zbl 1099.65100
[140] Wilbrandt, U., Bartsch, C., Ahmed, N., Alia, N., Anker, F., Blank, L., Caiazzo, A., Ganesan, S., Giere, S., Matthies, G., Meesala, R., Shamim, A., Venkatesan, J., John, V.: ParMooN—a modernized program package based on mapped finite elements. Comput. Math. Appl. 74(1), 74-88 (2017) · Zbl 1375.65158
[141] Zalesak, S.T.: Fully multidimensional flux-corrected transport algorithms for fluids. J. Comput. Phys. 31(3), 335-362 (1979) · Zbl 0416.76002
[142] Zhang, S.: A new family of stable mixed finite elements for the 3D Stokes equations. Math. Comput. 74(250), 543-554 (2005) · Zbl 1085.76042
[143] Zhou, G.H., Rannacher, R.: Pointwise superconvergence of the streamline diffusion finite-element method. Numer. Methods Partial Differ. Equ 12(1), 123-145 (1996) · Zbl 0841.65092
[144] Zhou, G.: How accurate is the streamline diffusion finite element method? Math. Comput. 66(217), 31-44 (1997) · Zbl 0854.65094
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.