×

Invariant measures for a class of stochastic third-grade fluid equations in 2D and 3D bounded domains. (English) Zbl 07931661

Summary: This work aims to investigate the well-posedness and the existence of ergodic invariant measures for a class of third-grade fluid equations in bounded domain \(D\subset \mathbb{R}^d, d=2,3\), in the presence of a multiplicative noise. First, we show the existence of a martingale solution by coupling a stochastic compactness and monotonicity arguments. Then, we prove a stability result, which gives the pathwise uniqueness of the solution and therefore the existence of strong probabilistic solution. Secondly, we use the stability result to show that the associated semigroup is Feller and by using “Krylov-Bogoliubov Theorem,” we get the existence of an invariant probability measure. Finally, we show that all the invariant measures are concentrated on a compact subset of \(L^2\), which leads to the existence of an ergodic invariant measure.

MSC:

35Q35 PDEs in connection with fluid mechanics
37L40 Invariant measures for infinite-dimensional dissipative dynamical systems
60H15 Stochastic partial differential equations (aspects of stochastic analysis)
60J25 Continuous-time Markov processes on general state spaces
76A05 Non-Newtonian fluids

References:

[1] Amrouche, C.; Cioranescu, D., On a class of fuids of grade 3, Int. J. Non-Linear Mech., 32, 1, 73-88, 1997 · Zbl 0887.76007 · doi:10.1016/0020-7462(95)00072-0
[2] Bensoussan, A., Stochastic navier-stokes equations, Acta Appl. Math., 38, 267-304, 1995 · Zbl 0836.35115 · doi:10.1007/BF00996149
[3] Breckner, H.I.: Approximation and optimal control of the stochastic Navier-Stokes equations. In Ph.D. Thesis, Halle (Saale), (1999)
[4] Brzeźniak, Z.; Motyl, E., Existence of a martingale solution of the stochastic Navier-Stokes equations in unbounded 2D and 3D domains, J. Differ. Equ., 254, 1627-1685, 2013 · Zbl 1259.35230 · doi:10.1016/j.jde.2012.10.009
[5] Brzeźniak, Z.; Motyl, E.; Ondrejat, M., Invariant measure for the stochastic Navier-Stokes equations in unbounded 2D domains., Ann. Probab., 45, 5, 3145-3201, 2017 · Zbl 1388.60107 · doi:10.1214/16-AOP1133
[6] Busuioc, AV; Iftimie, D., Global existence and uniqueness of solutions for the equations of third grade fluids, Int. J. Non-Linear Mech., 39, 1-12, 2004 · Zbl 1169.76319 · doi:10.1016/S0020-7462(02)00121-X
[7] Busuioc, AV; Iftimie, D., A non-Newtonian fluid with Navier boundary conditions, J. Dyn. Differ. Equ., 18, 2, 357-379, 2006 · Zbl 1127.76005 · doi:10.1007/s10884-006-9008-3
[8] Busuioc, AV; Iftimie, D.; Paicu, M., On steady third grade fluids equations, Nonlinearity, 21, 7, 1621, 2008 · Zbl 1148.35061 · doi:10.1088/0951-7715/21/7/013
[9] Busuioc, AV; Ratiu, TS, The second grade fluid and averaged Euler equations with Navier-slip boundary conditions, Nonlinearity, 16, 1119-1149, 2003 · Zbl 1026.76004 · doi:10.1088/0951-7715/16/3/318
[10] Cipriano, F.; Didier, P.; Guerra, S., Well-posedness of stochastic third grade fluid equation, J. Differ. Equ., 285, 496-535, 2021 · Zbl 1462.76009 · doi:10.1016/j.jde.2021.03.017
[11] Cioranescu, D.; Girault, V.; Rajagopal, KR, Mechanics and mathematics of fluids of the differential type, 2016, Cham: Springer, Cham · Zbl 1365.76001
[12] Da Prato, G., An introduction to infinite-dimensional analysis, 2006, Berlin: Springer Science & Business Media, Berlin · Zbl 1109.46001 · doi:10.1007/3-540-29021-4
[13] Da Prato, G.; Zabczyk, J.; Flajolet, P.; Ismail, MEH, Stochastic equations in infinite dimensions, Encyclopedia mathematics and its applications, 1992, Cambridge: Cambridge University Press, Cambridge · Zbl 0761.60052
[14] Da Prato, G.; Zabczyk, J., Ergodicity for Infinite Dimensional Systems, 1996, Cambridge: Cambridge University Press, Cambridge · Zbl 0849.60052 · doi:10.1017/CBO9780511662829
[15] Debussche, A.; Glatt-Holtz, N.; Temam, R., Local martingale and pathwise solutions for an abstract fluids model, Phys. D, 240, 1123-1144, 2011 · Zbl 1230.60065 · doi:10.1016/j.physd.2011.03.009
[16] Dunn, JE; Rajagopal, KR, Fluids of differential type: critical review and thermodynamical analysis, Int. J. Eng. Sci., 33, 689-729, 1995 · Zbl 0899.76062 · doi:10.1016/0020-7225(94)00078-X
[17] Edwards, RE, Functional analysis, 1995, New York: Dover Publications Inc., New York
[18] Flandoli, F., Dissipativity and invariant measures for stochastic Navier-Stokes equations, Nonlinear Differ. Equ. Appl., 1, 4, 403-423, 1994 · Zbl 0820.35108 · doi:10.1007/BF01194988
[19] Flandoli, F.; Gatarek, D., Martingale and stationary solutions for stochastic Navier-Stokes equations, Probab. Theory Relat. Fields, 102, 367-391, 1995 · Zbl 0831.60072 · doi:10.1007/BF01192467
[20] Fosdick, RL; Rajagopal, KR, Thermodynamics and stability of fluids of third grade, Proc. Roy. Soc. London Ser. A, 339, 351-377, 1980 · Zbl 0441.76002
[21] Guo, B.; Guo, C.; Zhang, J., Martingale and stationary solutions for stochastic non-Newtonian fluids, Differ. Int. Equ., 23, 3-4, 303-326, 2010 · Zbl 1240.60184
[22] Hairer, M.; Mattingly, JC, Ergodicity of the 2D Navier-Stokes equations with degenerate stochastic forcing, Annal. Math., 164, 993-1032, 2006 · Zbl 1130.37038 · doi:10.4007/annals.2006.164.993
[23] Hamza, M.; Paicu, M., Global existence and uniqueness result of a class of third-grade fluids equations, Nonlinearity, 20, 5, 1095, 2007 · Zbl 1114.76004 · doi:10.1088/0951-7715/20/5/003
[24] Hausenblas, E.; Razafimandimby, PA, On stochastic evolution equations for nonlinear bipolar fluids: well-posedness and some properties of the solution, J. Math. Anal. Appl., 441, 2, 763-800, 2016 · Zbl 1383.35161 · doi:10.1016/j.jmaa.2016.04.044
[25] Jakubowski, A., The almost sure Skorokhod representation for subsequences in nonmetric spaces, Theory Probab. Appl., 42, 1, 167-174, 1998 · Zbl 0923.60001 · doi:10.1137/S0040585X97976052
[26] Ladyzhenskaya, OA, New equations for the description of the motions of viscous incompressible fluids, and global solvability for their boundary value problems, Tr. Mater. Inst. Steklov, 102, 95-118, 1967
[27] Liu, W.; Rockner, M., Stochastic Partial Differential Equations: An Introduction, 2015, Switzerland: Springer International Publishing Switzerland, Switzerland · Zbl 1361.60002 · doi:10.1007/978-3-319-22354-4
[28] Nguyen, P.; Tawri, K.; Temam, R., Nonlinear stochastic parabolic partial differential equations with a monotone operator of the Ladyzenskaya-Smagorinsky type, driven by a Lévy noise, J. Funct. Anal., 281, 8, 2021 · Zbl 1522.35609 · doi:10.1016/j.jfa.2021.109157
[29] Nouira, R., Cipriano, F., Tahraoui, Y.: On the Existence and long time behaviour of \(H^1\)-Weak Solutions for \(2,3d\)-Stochastic 3rd-Grade Fluids Equations. arXiv preprint arXiv:2311.14596, (2023)
[30] Ondreját, M., Uniqueness for stochastic evolution equations in Banach spaces, Dissertationes Math., 426, 1-63, 2004 · Zbl 1053.60071 · doi:10.4064/dm426-0-1
[31] Paicu, M., Global existence in the energy space of the solutions of a non-Newtonian fluid, Phys. D, 237, 10-12, 1676-1686, 2008 · Zbl 1143.76359 · doi:10.1016/j.physd.2008.03.019
[32] Pardoux, E.: Equations aux Dérivées Partielles Stochastiques Non Linéaires Monotones. Thèse, Paris Sud-Orsay, (1975)
[33] Parida, M.; Padhy, S., Electro-osmotic flow of a third-grade fluid past a channel having stretching walls, Nonlinear Eng., 8, 1, 56-64, 2019 · doi:10.1515/nleng-2017-0112
[34] Reddy, GJ; Hiremath, A.; Kumar, M., Computational modeling of unsteady third-grade fluid flow over a vertical cylinder: A study of heat transfer visualization, Results Phys., 8, 671-682, 2018 · doi:10.1016/j.rinp.2017.12.054
[35] Rivlin, RS; Ericksen, JL, Stress-deformation relations for isotropic materials, Arch. Rational Mech. Anal., 4, 323-425, 1955 · Zbl 0064.42004
[36] Roubic̃ek, T.: Nonlinear Partial Differential Equations with Applications. Birkhäuser Verlag Basel-Boston-Berlin, (2005) · Zbl 1087.35002
[37] Sapountzoglou, N., Tahraoui, Y., Vallet, G., Zimmermann, A.: Stochastic pseudomonotone parabolic obstacle problem: well-posedness & Lewy-Stampacchia’s inequalities, arXiv preprint arXiv: 2305.16090, (2023)
[38] Sequeira, A.; Videman, J., Global existence of classical solutions for the equations of third grade fuids, J. Math. Phys. Sci., 29, 2, 47-69, 1995 · Zbl 0839.76005
[39] Tahraoui, Y.; Cipriano, F., Optimal control of two dimensional third grade fluids, J. Math. Anal. Appl., 523, 2, 2023 · Zbl 1510.35247 · doi:10.1016/j.jmaa.2023.127032
[40] Tahraoui, Y.; Cipriano, F., Local strong solutions to the stochastic third grade fluids equations with Navier boundary conditions, Stoch. PDE: Anal. Comp., 12, 1699-1744, 2024 · Zbl 07914047 · doi:10.1007/s40072-023-00314-9
[41] Tahraoui, Y., Cipriano, F.: Optimal control of third grade fluids with multiplicative noise, arXiv preprint arXiv:2306.13231, (2023)
[42] Vallet, G.; Zimmermann, A., Well-posedness for nonlinear SPDEs with strongly continuous perturbation, Proceed. R. Soc. Edinb.: Sect. A Math., 151, 1, 265-295, 2021 · Zbl 1458.60075 · doi:10.1017/prm.2020.13
[43] Zhao, C.; Liang, Y.; Zhao, M., Upper and lower bounds of time decay rate of solutions to a class of incompressible third grade fluid equations, Nonlinear Anal. Real World Appl., 15, 229-238, 2014 · Zbl 1297.35194 · doi:10.1016/j.nonrwa.2013.08.001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.