×

Upper and lower bounds of time decay rate of solutions to a class of incompressible third grade fluid equations. (English) Zbl 1297.35194

Summary: This paper discusses the large time behaviors of solutions for a class of incompressible third grade fluid equations in \(\mathbb R^3\). Using the Fourier splitting method of M. Schonbek [in: Advances in geometric analysis and continuum mechanics. Proceedings of a conference, held at Stanford University, Stanford, CA, USA, 1993 in honor of the seventieth birthday of Robert Finn. Cambridge, MA: International Press. 269–274 (1995; Zbl 0842.35142)], the authors prove the upper and lower bounds of the time decay rate in \(\mathbb L^2\) for the weak solutions. The upper and lower bounds of decay rate are optimal in the sense that they coincide with the upper and lower bounds of the decay rate of solutions to the heat equation.

MSC:

35Q35 PDEs in connection with fluid mechanics
35Q79 PDEs in connection with classical thermodynamics and heat transfer
35D30 Weak solutions to PDEs
76A05 Non-Newtonian fluids

Citations:

Zbl 0842.35142
Full Text: DOI

References:

[1] Rivlin, R. S.; Ericksen, J. L., Stress-deformation relations for isotropic materials, J. Ration. Mech. Anal., 4, 323-425 (1955) · Zbl 0064.42004
[2] Sequeira, A.; Videman, J., Global existence of classical solutions for the equations of third grade fuids, J. Math. Phys. Sci., 29, 47-69 (1995) · Zbl 0839.76005
[3] Cioranescu, D.; Girault, V., Weak and classical solutions of a family of second grade fuids, Int. J. Non-Linear Mech., 32, 317-335 (1997) · Zbl 0891.76005
[4] Busuioc, V.; Iftimie, D., Global existence and uniqueness of solutions for the equations of third grade fuids, Int. J. Non-Linear Mech., 39, 1-12 (2004) · Zbl 1169.76319
[5] Hamza, M.; Paicu, M., Global existence and uniqueness of solutions for the equations of third-grade fluids equations, Nonlinearity, 20, 1095-1114 (2007) · Zbl 1114.76004
[6] Paicu, M.; Raugel, G.; Rekalo, A., Regularity of the global attractor and finite-dimensional behavior for the second grade fluid equations, J. Differential Equations, 252, 3695-3751 (2012) · Zbl 1235.35225
[7] Schonbek, M. E., Large time behavior of solutions to the Navier-Stokes equations, Comm. Partial Differential Equations, 11, 733-763 (1986) · Zbl 0607.35071
[8] Ukai, S., A solution formula for the Stokes equation in \(R_+^n\), Comm. Pure Appl. Math., 40, 611-621 (1987) · Zbl 0638.76040
[9] Borchers, W.; Miyakawa, T., \(L^2\) decay rate for the Navier-Stokes flow in half spaces, Math. Ann., 282, 139-155 (1988) · Zbl 0627.35076
[10] Bae, H.; Choe, H., Decay rate for the incompressible flows in half spaces, Math. Z., 238, 799-816 (2001) · Zbl 1028.35118
[11] Schonbek, M. E., \(L^2\) decay for weak solutions of the Navier-Stokes equations, Arch. Ration. Mech. Anal., 88, 209-222 (1985) · Zbl 0602.76031
[12] Wiegner, M., Decay results for weak solution of the Navier-Stokes equations in \(R^n\), J. Lond. Math. Soc., 35, 303-313 (1987) · Zbl 0652.35095
[13] Schonbek, M. E., Lower bounds of rate of decay for solutions to the Navier-Stokes equations, J. Amer. Math. Soc., 4, 423-449 (1991) · Zbl 0739.35070
[14] Schonbek, M. E., Large time behaviour of solutions to the Navier-Stokes equations in \(H^m\) spaces, Comm. Partial Differential Equations, 20, 103-117 (1995) · Zbl 0831.35132
[15] Schonbek, M. E.; Wiegner, M., On the decay of higher order norms of the solutions of Navier-Stokes equations, Proc. Roy. Soc. Edinburgh, 126, 677-685 (1996) · Zbl 0862.35086
[16] Zhang, L., Sharp rate of decay of solutions to 2-dimensional Navier-Stokes equations, Comm. Partial Differential Equations, 20, 119-127 (1995) · Zbl 0823.35145
[17] Zhang, L., On the modified Navier-Stokes equations in \(n\)-dimensional spaces, Bull. Inst. Math. Acad. Sin. (N.S.), 32, 185-193 (2004) · Zbl 1072.35147
[18] Oliver, M.; Titi, E. S., Remark on the rate of decay of higher order derivatives for solutions to the Navier-Stokes equations in \(R^n\), J. Funct. Anal., 172, 1-18 (2000) · Zbl 0960.35081
[19] He, C.; Xin, Z., On the decay properties of solutions to the nonstationary Navier-Stokes equations in \(R^3\), Proc. Roy. Soc. Edinburgh, 131, 597-619 (2001) · Zbl 0982.35083
[20] Brandolese, L.; Vigneron, F., New asymptotic profiles of nonstationary solutions of the Navier-Stokes system, J. Math. Pures Appl., 88, 64-86 (2007) · Zbl 1127.35033
[21] Dong, B.; Chen, Z., Remarks on upper and lower bounds of solutions to the Navier-Stokes equations in \(R^2\), Appl. Math. Comput., 182, 553-558 (2006) · Zbl 1103.76016
[22] Jia, Y.; Zhang, X.; Dong, B., The asymptotic behavior of solutions to three-dimensional Navier-Stokes equations with nonlinear damping, Nonlinear Anal. RWA, 12, 1736-1747 (2011) · Zbl 1216.35088
[23] Han, P., Decay results of solutions to the incompressible Navier-Stokes flows in a half space, J. Differential Equations, 250, 3937-3959 (2011) · Zbl 1211.35215
[24] Han, P., Decay rates for the incompressible Navier-Stokes flows in 3D exterior domains, J. Funct. Anal., 263, 3235-3269 (2012) · Zbl 1256.35058
[25] Bae, H., Regularity and decay rate of solutions of non-Newtonian flow, J. Math. Anal. Appl., 231, 467-491 (1999) · Zbl 0920.76007
[26] Guo, B.; Zhu, P., Algebraic \(L^2\) decay for the solution to a class system on non-Newtonian fluid in \(R^2\), J. Math. Phys., 41, 349-356 (2000) · Zbl 0989.35108
[27] Nečasová, Š.; Penel, P., \(L^2\) decay for weak solution to equations of non-Newtonian incompressible fluids in the whole space, Nonlinear Anal. TMA, 47, 4181-4191 (2001) · Zbl 1042.76504
[28] Dong, B.; Li, Y., Large time behavior to the system of incompressible non-Newtonian fluids in \(R^2\), J. Math. Anal. Appl., 298, 667-676 (2004) · Zbl 1059.35104
[29] Dong, B.; Chen, Z., Time decay rates of non-Newtonian flows in \(R_+^n\), J. Math. Anal. Appl., 324, 820-833 (2006) · Zbl 1102.76014
[30] Liu, Y., Decay and scattering of small solutions of a generalized Boussinesq equation, J. Funct. Anal., 147, 51-68 (1997) · Zbl 0884.35129
[31] Wang, Y.; Mu, C.; Wu, Y., Decay and scattering of solutions for a generalized Boussinesq equation, J. Differential Equations, 247, 2380-2394 (2009) · Zbl 1179.35252
[32] Li, Y.; Liu, Y.; Lin, C., Decay estimates for homogeneous Boussinesq equations in a semi-infinite pipe, Nonlinear Anal., 74, 4399-4417 (2011) · Zbl 1219.35193
[33] Brandolese, L.; Schonbek, M. E., Large time decay and growth for solutions of a viscous Boussinesq system, Trans. Amer. Math. Soc., 364, 5057-5090 (2012) · Zbl 1368.35217
[34] Wang, D.; Yu, C., Global weak solution and large-time behavior for the compressible flow of liquid crystals, Arch. Ration. Mech. Anal., 204, 881-915 (2012) · Zbl 1285.76005
[35] Dai, M.; Qing, J.; Schonbek, M. E., Asymptotic behavior of solutions to liquid crystal systems in \(R^3\), Comm. Partial Differential Equations, 37, 2138-2164 (2012) · Zbl 1294.76050
[36] Schonbek, M. E.; Schonbek, T. P.; Süli, Endre, Large-time behaviour of solutions to the magnetohydrodynamics equations, Math. Ann., 304, 717-756 (1996) · Zbl 0846.35018
[37] Agapito, R.; Schonbek, M. E., Non-uniform decay of MHD equations with and without magnetic diffusion, Comm. Partial Differential Equations, 32, 1791-1812 (2007) · Zbl 1132.35073
[38] Niche, C. J.; Schonbek, M. E., Decay of weak solutions to the 2D dissipative quasi-geostrophic equation, Comm. Math. Phys., 276, 93-115 (2007) · Zbl 1194.76040
[39] Guo, Y.; Wang, Y., Decay of dissipative equations and negative Sobolev spaces, Comm. Partial Differential Equations, 37, 2165-2208 (2012) · Zbl 1258.35157
[40] Adams, R. A., Sobolev Spaces (1975), Academic Press: Academic Press New York · Zbl 0314.46030
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.